#最终幻想[超话]##最终幻想#
突然想问一下,《最终幻想10》的最终Boss“SIN”的实力在最终幻想系列里算什么水平?
在《最终幻想纷争》的访谈中,谈到为什么没有让西摩亚登场,野村哲也说:“因为西摩亚只是「中Boss」。虽然杰克特也不是最终Boss,但是,要让SIN登场实在是做不到啊(笑)。而且如果让西摩亚登场,要描写他和泰达的关系就会很困难,这样一来,就需要让尤娜登场。如果要直接描写和泰达的关系,还是让泰达的父亲杰克特登场是最好的。”
从这段话里可以看出,SIN的力量是非常强大的,以至于在纷争系列里登场会破坏平衡,但是,身为“世界之理”、能将一切归于“无”的暗黑之云都能登场,而且还有比暗黑之云更强的卡欧斯,在卡欧斯之上还有神龙的存在,然而野村哲也认为让SIN登场会破坏平衡,所以无法让他在纷争中登场,那SIN得有多强啊?[允悲][允悲][允悲]
突然对《最终幻想10》感兴趣了[馋嘴][馋嘴][馋嘴]
@RogerJ_ @最终幻想11-瓦纳迪尔之星歌 @最终决战兵器6号 @段小丑鱼 @DDD的车神 @某真祖CR1 @ZEON的亡灵 @ZJHtakayama373 @1shmael-AXH @风魔无下限 @盖修班斯特type卡利 @装甲北极白熊

《螺旋星系的具体情况》

我们地球生存的环境,是银河系。但是宇宙中有很多其他星系,螺旋星系最有代表性,
这些星系被称为河外星系。

螺旋星系(Spiral Galaxy),是由大量气体、尘埃和又热又亮的恒星所形成,有旋臂结构的扁平状星系。螺旋星系是
具有漩涡结构的河外星系,在哈勃的星系分类中用S代表。

螺旋星系的螺旋形状,最早是在1845年观测猎犬座星系M51时发现的。

螺旋星系在河外星系中的比例------ H,它是很高的,H 的具体数值,被称为刘洪斌极限。

比如扭曲的螺旋星系(ESO 510-G13),是与另一个星系碰撞的结果,而另一个星系完全被吸收掉了,这种过程通常需要耗费数
百万年的时间。在银河系形成的现代理论中,最早期(据知是天文学家Els,之后提出论文的有Olin Eggen,Donald Lynden-
Bell,和Allan Sandage[1])描述在一次单独(相对性的)的快速碰撞事件之后,银晕伴随着星系盘面诞生了。在1
978年,出现另一种版本,(据知是SZ,作者有Leonard Searle and Robert Zinn[2])叙述的是一种渐进的过程,首
先是较小的单位崩溃瓦解掉,然后才合并成为大的部份。

更为现代的想法是银晕可能是曾经环绕银河系旋转的矮星系和球状星团被毁灭之后的碎片,那么银晕将是老的部分被回收更
新成新天体的场所。在最近几年,主要的想法被集中关注在星系演化上的合并事件,在电脑技术上的快速进展允许对星系
演化做更好的模拟,并且观测技术的改进也提供了许多遥远星系经历合并事件的数据与资料。在1994年发现我们的卫星
星系,人马座矮椭球星系(SagDEG),正在被银河系逐渐的撕裂和吞噬之后,这种事件被认为在大星系的演化中是十分普遍
的。麦哲伦云是我们的卫星星系,无疑的将来也会遭受和人马座矮椭球星系相同的命运。合并掉大的卫星星系的事件或许可以解释M31(仙女座大星系)看起来有双重核心的问题。

人马座矮椭球星系环绕我们我们银河系的轨道几乎是垂直银河盘面的,他正在穿越盘面,每次穿越时恒星都会被剥离并进入
我们银河系的银晕内,最后,人马座矮椭球星系将只会剩下核心。尽管如此,他剩余得质量仍然与巨大的球状星团,像半
人马座ω星团和G1一样,但看起来则相当不同,因为有大量神秘的暗物质出现,使它的表面密度较低,而一但成为球状星团,神秘的暗物质含量可能就很少了。

更多的矮星系与银河系正在进行合并的例子是大犬座矮星系,被认为和2003年发现的麒麟座环和2005年发现的室女座星流有关。

螺旋星系的名称来自由核球向外成对数螺旋在星系盘内延展,并有恒星形成的明亮螺旋臂。虽然有时很难辨明,例如
螺旋臂有丛生的絮结时,但螺旋臂相对的可以区分出有星系盘结构却没有螺旋臂的透镜星系。

螺旋星系的星系盘外通常会有庞大的球形星系晕包围着,其中主要的成员是年老的第二星族恒星,也有许多被聚集在环绕着星系核的球状星团内。

林达博先生是研究螺旋臂形成的先驱,他意识到恒星要恒久保持螺旋臂的形状会遭遇到"缠绕困境"而难以维持住,因为星系
盘中天体的环绕速度会随着至中心的距离而变化,一条向外辐射出的臂(像车轮的辐条)很快就会因为星系的自转弯成弧
线。星系只要自转几周之后,螺旋臂的曲率就会增加至紧紧缠绕着星系的核球。但观测到的却不是如此。

第一个令人可以接受的理论是林家翘与徐遐生两人在1964年发明的,他们建议螺旋臂只是螺旋密度波的显示。他们假设恒星在细长的椭圆轨道上并且原来
的轨道方向是互有关联的,也就是说,椭圆以很平顺的方式随着与核心距离的增加逐渐改变了他们的方向。这就是图中所说明的,很清楚的观察到椭圆轨道在
某些区域紧密结合在一起的"现象"就是螺旋臂。

我是林家翘与徐遐生先生的仰慕者,我的渐开线计算公式,是研究螺旋星系的好工具!
天文学家根据美国宇航局"哈勃"太空望远镜的观测数据研究发现,太空中美丽的螺旋星系曾经都是"丑小鸭"。天文学家认为,在宇宙的早期,螺旋星系
并不是如今的模样,而是呈现一些奇怪的、畸形的外观,后来才慢慢演化成螺旋形状。

近一半的螺旋星系,包括银河系,它们在60亿年前呈现出一些非常奇怪的形状。天文学家认为,这些奇怪的星系应该是通过碰撞和合并等过
程形成螺旋星系的。尽管通常认为星系合并事件在80亿年前就已经开始大幅减少,但是研究表明,在那之后星系合并事件发生频率仍然很高,
并一直持续到40亿年前。此外,还有一种被广泛认同的观点就是,星系合并会形成椭圆星系。但是,恰恰与这种观点相反,有科学研究团
队支持另一种想定,那就是宇宙碰撞会形成螺旋星系。

在研究团队于《天文学和天体物理学》杂志上发表的另一篇研究论文中,天文学家提出了"螺旋再造"的假设。这种假设认为,那些受到富
含气体的合并者影响的奇怪星系会慢慢再生为一种巨型螺旋。尽管银河系也是一个螺旋星系,但是它似乎少了些戏剧性变化过程。它的形成
历史相对平静,而且在一段天文时期内避开了许多剧烈的碰撞。然而,巨大的仙女座星系则没有这么幸运,它非常符合这种"螺旋再造"的假设。

在这里,提一个内行的问题是必须的,就是

星系是如何形成的?

这个问题依然是天文物理学中最活跃的一个研究领域,并且继续延伸至星系演化的领域,而有些观念与看法已经被广泛的接受。

从宇宙微波背景辐射的观测已经证实,在大霹雳之后,宇宙有一段时间是非常同质性的,其间的起伏低于十万分之一。

今天最能被接受的观点是原始扰动的成长形成今天我们所观察到的所有结构,原始扰动诱发局部地区气体的物质密度增加,形成星
团和恒星。这种模型的一种结果是在早期宇宙的一些地区因为有较高一点的密度而形形成了星系, 因此星系的诞生与早期宇宙的物理息息相关。

在这个领域的研究有许多都聚焦在我们自己的银河系,因为它是最容易观察的星系。这些观察必须能解释,或至少不再增加分歧
的意见,星系演化的理论,包括:星系盘十分的薄、密度和自转。 星系晕非常巨大、稀薄、没有自转(或是只有微量的顺向或逆向的转动),也没有可观察
出的结构。存在于星系晕中的恒星和星系盘中的比较,通常都非常老和金属量非常少(此处是一个对比,但是这些资料之间没有绝对的关联性)。

一些天文学家曾经鉴定出一些介于两者之间的恒星,有人称之为"低金属密实盘"(metal weak thick disk),也有人称为"
特殊第二族星",不一而足。如果确实有明显的区分,她们的描述将如同贫金属星(但晕星并不那么缺乏金属,也没有那么
老),并且轨道非常靠近星盘,有点儿"虚胖"的,较厚的星盘形状。

球状星团是典型的老与贫金属,不是所有的都像大多数的一样是贫金属,而且/或许有些是比较年轻的恒星。在球状星团中有些
恒星的年龄看起来好像和宇宙一样老!(使用完全不同的测量和分析方法)在每个球状星团之中,实际上都是在同一个时间诞生的。(只有少
数几个显示有不同世代的恒星分别诞生)轨道细小(接近星系中心)的球状星团,轨道接近星盘(对星盘是低倾斜的)和低离心率(比较圆
些),而距离较远的球状星团轨道来自所有的方向,也有较高的离心率。高速云,中性氢的云气,如雨般的向星系坠入,并且推测从
一开始就是如此。(这是形成星盘中的云气与恒星诞生所必须的来源)

有相当大的总角动量 中心有核球的结构,被周围的星系盘环绕着。核球类似椭圆星系,有许多老年属于第二星
族的恒星,并且通常会有超重黑洞隐藏在中心。 星系盘是扁平的,伴随着星际物质、年轻的第一星族恒星、和疏散星团,共同绕着核球旋转。

具有漩涡结构的河外星系,在哈勃的星系分类中用S代表。螺旋星系的螺旋形状,最早是在1845年观测猎犬座星系
M51时发现的.螺旋星系的中心区域为透镜状,周围围绕着扁平的圆盘.从隆起的核球两端延伸出若干条螺线
状旋臂,叠加在星系盘上。除了旋臂上集聚高光度O、B型星、超巨星、电离氢区外,同时还有大量的尘埃
和气体分布在星系盘上。从侧面看在主平面上呈现为一条窄的尘埃带,有明显的消光现象。

好了,本人啰里啰嗦写这么多,其实是想表明我的观点,即宇宙始于大爆炸,这个理论,真真的是
想当然。

观察发现,现在宇宙在膨胀,其回溯点(奇点),是宇宙的中心位置,对此,我不以为然。

其实,宇宙很可能是半当中开始膨胀!
至于渐开线方程,应该为:

x=r×cos(θ+α)+(θ+α)×r×sin(θ+α)

y=r×sin(θ+α)-(θ+α)×r×cos(θ+α)
由于星系有厚度h,所以z不等于0,z=h

式中,r为基圆半径;θ为展角,其单位为弧度

展角θ和压力角α之间的关系称为渐开线函数

θ=inv(α)=tan(α)-α

式中,inv为渐开线involute的缩写(本文作者刘洪斌)

水平位移几种观测方法的比较
今天,一个做基坑变形监测的朋友问我,我们一般测水平位移都用哪种方法,那我直接告诉他,建议他用小角法进行观测。那么为什么我推荐用小角法进行观测,这其中我查找了网上的一些资料和现实观测中的一些经验,总结了视准线法、测小角法、前方交会法、极坐标法这几种观测方法的优缺点,看一下为什么推荐用小角法。

测小角法:

原理:具体的原理可以参考小角法原理及在基坑水平位移监测中的测量步骤这篇文章。

精度分析:

由小角法的观测原理可知,距离D和水平角β是两个相互独立的观测值,所以由上式根据误差传播定律可得水平位移的观测误差:

小角法水平位移的观测误差

水平位移观测中误差的公式,表明:

① 距离观测误差对水平位移观测误差影响甚微,一般情况下此部分误差可以忽略不计,采用钢尺等一般方法量取即可满足要求;

② 影响水平位移观测精度的主要因素是水平角观测精度,应尽量使用高精度仪器或适当增加测回数来提高观测度;

③ 经纬仪的选用应根据建筑物的观测精度等级确定,在满足观测精度要求的前提下,可以使用精度较低的仪器,以降低观测成本。

优点:此方法简单易行,便于实地操作,精度较高。

不足:须场地较为开阔,基准点应该离开监测区域一定的距离之外,设在不受施工影响的地方。

视准线法:

当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。

原理:如下图所示,点A、B是视准线的两个基准点(端点),1、2、3为水平位移观测点。观测时将经纬仪置于A点,将仪器照准B点,将水平制动装置制动。竖直转动经纬仪,分别转至1、2、3 三个点附近,用钢尺等工具测得水准观测点至A—B这条视准线的距离。根据前后两次的测量距离,得出这段时间内水平位移量。

视准线法

精度分析:

由基准线的设置过程可知,观测误差主要包括仪器测站点仪器对中误差,视准线照准误差,读数照准误差,其中,影响最大的无疑是读数照准误差。

可知,当即准线太长时,目标模糊,读数照准精度太差;且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。

另外此方法还受到大气折光等因素的影响。

优点:视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。

不足:对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照准困难。当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。精度低,不易实现自动观测,受外界条件影响较大,而且变形值(位移标点的位移量)不能超出该系统的最大偏距值,否则无法进行观测。

前方交会(测角前方交会):

如果变形观测点散布在变形体上或者在变形体附近无合适的基准点可供选择时,人们常用前方交会法来进行观测,这时,基准点选择在面对变形体的远处。

测角前方交会:

原理:

前方交会

式中ms为测角中误差,ρ"=206265,S为A、B间距离。对该式的进一步分析表明:当γ=90°时,点位中误差不随α,β的变化而变化;当γ>90°时,对称交会时的点位中误差最小,精度最高;当γ<90°时,对称交会时点位中误差最大,对精度不利。

优点:前方交会法相对于其他水平位移观测的方法如视准线法、小角度法等具有以下优点:① 基点布置有较大灵活性。前方交会法的工作基点一般位于面向测点并可以适当远离变形体,而视准线法等方法的工作基点必须设置在位于变形体附近并且必须基本与测点在同一轴线上,所以前方交会法工作基点的选择更具灵活性。特别是当变形体附近难以找到合适的工作基点时,前方交会法更能显出其优点。②前方交会法能同时观测2个方向的位移。③观测耗时少。当测点较多,并分布在多条直线上时,前方交会法的耗时较视准线等方法少。

不足:前方交会法由于受测角误差、测边误差、交会角及图形结构、基线长度、外界条件的变化等因素影响,精度较低。另外,其观测工作量较大,计算过程较复杂,故不单独使用,而是常作为备用手段或配合其他方法使用。

特别的,对于边长交会法,由于测距仪的测距精度包含固定误差和比例误差,当距离增加时其误差也会增大。在选择工作基点时,除要满足通视和工作基点的稳定性外,还必须考虑工作基点与测点间的视距不要过长。

极坐标法

极坐标法属于边角交会法,是边角交会法的最常见的方法。

原理:

极坐标法

两个方向的水平位移中误差为:

M△Xp=√2*√(ms2*cos2(αA-B+β)+sin2(αA-B+β)*S2*mβ2/ρ2)

M△Yp=√2*√(ms2*sin2(αA-B+β)+cos2(αA-B+β)*S2*mβ2/ρ2)

其中,ms为测距中误差,mβ为测角中误差,αA-B为A-B便的方位角,ρ=206265。

优点:使用方便,尤其是利用全站仪进行测量可以直接测得坐标,简单快速。

不足:精度较低,适用于精度不是很高的水平位移监测工作。

对于上面的四种方法,都列出了优缺点,基坑变形监测中,我们最好根据实际情况去选择比较实用、经济、简单的方法。小角法相对于其他方法来说在一般的基坑中相对简单的观测方法,计算起来也是比较简单。所以建议使用小角法。


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 所以虽然恋爱中大多数人都常有小摩擦,但是双鱼座跟处女座却很少吵架,因为只要一谈起自己喜欢的艺术品来,他们就有说不完的话题,每天都觉得这个人跟自己一样如此有眼光,
  • !然后,就在刚才,我在看放开我北鼻!
  • 河源CiCi®-鄧平: 【项目】染发烫发因为快过年了就在网上找到了这家网红店还发了个朋友圈问问哪个发型师比较好留言最多的就是鄧平,早点预约好就过来了~位置在坚基
  • 大一在读 爱好摄影拍摄时间要看我上课时间啦设备:佳能80d➕35mm、50mm定焦,18-200mm变焦无偿约拍,就是想提升一下自己的技能~✔️可接个人/闺蜜
  • 法官引述案情說,案發時白衣人湧至閘內向黑衣人及其他人士施襲,黑衣人上到月台車廂,但列車沒有開車,亦沒有關門,而現場又沒有警員,列車廣播要求乘客離開車站,乘客只用
  • ▶“终于有一天,你的出现,我的生活由此改变,你就像,我一直等待的光明”bgm简直就是男主对女主的告白!还有船戏那段真的看两百遍不嫌多,甜炸了!
  • 印光大师讲的父亲不信佛只是听过佛号,回向临终儿子得离苦的案例: 无锡近来念佛者甚多,一人会做素菜,凡打佛七,皆叫他做菜,彼日日听念佛声。感性的夜晚...偷懒刷抖
  • 中秋节赶紧拉着你的小姐妹去薅酸奶吧天友的新品草莓流心芝士爆珠酸奶竟然这么好喝下午喝了一杯就把一箱爆珠酸奶领回家了这个中秋节和爆珠酸奶一起过,太绝了❤打卡人气联名
  • 」from com’z很喜欢张真源温柔的表面底下b男的性格 去年因为分享大学生活被骂 那就更常发微博 穿校服被队友粉嘲 那就穿春夏秋冬不同样子不同颜色的校服发照
  • 【家庭‮育教‬分享Day268. ͏ 】著名‮理心‬咨询师苏珊·福沃德说过:“一‮孩个‬子如果‮是总‬被迫对自己的想法‮感和‬觉说谎,想要培‮强养‬大的自信心,
  • Falling in love with Oppa is like breathing, i do it without ever knowing. ❤❤ O
  • 有趣的是,为了对抗有闲阶级的这一转向,存在主义哲学家开始反对人的异化,呼吁人应当退回到他的内心,去发掘那个不被消费所侵染的“自我”。有了这种功夫,等于得到了无价
  • 而这位老人就是大孩子的姥姥,老人家看到自己的孙子被女子说了以后,心里就不舒服。而且更气人的是,这个老人是非不分,明明自己的孙子做错了事情,还反过来责怪别人,这对
  • 本来急性子的阿婆,现在在你面前改变了[嘻嘻][嘻嘻]哈尔滨下雪啦❄️❄️❄️❄️⛄️☃口语课完了之后出来发现下了很大的雨☔️突然想起来早上才把从书包拿出来所以中
  • 要使自己的生命获得极值,就不能太在乎委屈,不能让它们揪紧你的心灵。只有那些边走边思考,且行且规划的人,才是能让生活变的更加的质感,螺狮粉才会是不把精力和时间空抛
  • 기분좋을때만 나타나는 지맘데로 복근... 운동안한지 오래됐는데 남아있는 가끔 나타나주는 고마운 아이들 .... ㅋㅋ할수있는 운동이 별로 없는 나
  • 《黄帝内经》第117课:不信医则病不治‍同志们好上节课给大家谈到五脏别论当中一个非常著名的观点,也就是说作为一个临床医生,在面对患者的时候,我们要详实的收集患者
  • 这个夏天感谢沉香的出现,让我有了这段愉快的追剧时光 2022.7.20—2022.9.7我永远会记得在天界喜欢翻龟的小人应渊帝君,励志成为天下第一话本大家的颜淡
  • 公孙渊兴奋地将吴使的脑袋送去洛阳邀功,却不知曹魏此前截获了公孙渊与孙权勾结的密信,早就对他有所提防。 曹叡问公孙渊会如何应对,司马懿回复:“事先弃城而逃是上计
  • #上海美食# 当所有的言语都显得苍白时,唯有保持沉默才是最有力的支持!你会明白:当一个人跟生命擦肩而过后重生的心境:对名利、钱财都会看得很浅淡!