了解踝关节:

长期以来,人们一直认为踝关节和足是连接下肢与地面的一个并不复杂的附属肢体,足要比手的功能少得多。但从许多方面来看,踝和足通过骨性结构、韧带附着和肌的收缩,从一个适应于不规则地面的柔软性结构变为刚性的负重结构,可以支持体重,控制和稳定小腿在着地的足上,对不规则的地面进行调节和适应。比如当用足趾站立,攀登或跳跃时,以抬高身体;在步行、跑步、跳跃着地时,吸收震动;在上肢截肢或肌麻痹的人,足能替代手的某些功能。因此,足的结构要比手更为精细。

解剖学基础
涉及踝足部运动学的骨骼包括胫腓骨远端和足骨,足骨包括跗骨,跖骨,趾骨。其中跗骨7块,属短骨,分前、中、后三列。

后列包括上方的距骨和下方的跟骨;中列为位于距骨前方的足舟骨;前列为内侧楔骨、中间楔骨、外侧楔骨及跟骨前方的骰骨。跖骨5块,自内侧向外侧依次为第1-5跖骨,形状和排列大致与掌骨相当,但比掌骨粗大。跖骨近端为底,与跗骨相接,中间为体,远端称头,与近节趾骨相接。第5跖骨底向后突出,称第5跖骨粗隆,在体表可扪到。趾骨14块,踇趾为2节,其余各趾为3节。形态和命名与指骨相同。

对于胫腓骨远端来说,相对比较重要的骨性标志是内、外踝,内踝在踝部内侧面,是胫骨远端的一个突起,外踝则在踝部的外侧面,是腓骨的最远端。外踝比内踝更突向远端,因此踝关节的外翻运动比内翻运动受到更多的限制。

踝足部关节包括距小腿关节,距跟关节,跗横关节,附跖关节,跖骨间关节,跖趾关节和趾骨间关节。

距小腿关节也称踝关节,由胫、腓骨的鞍形下端与距骨滑车构成,近似单轴的屈戊关节,胫腓骨下端形成的空穴形状与距骨上关节平面的形状非常适应。距骨体(滑车)的上部是楔形,前部要比后部宽约1/4,宽度平均相差2.4mm,前部的最小差异约为1.3mm,最大差异约为6mm,从前到后,关节面跨度约呈现105°的扇形。

踝关节的基本运动是背屈和跖屈 ,转动轴通过内、外踝尖点下方,从前、内侧延伸到下、后、外侧 ,也就是说当膝关节的水平轴垂直人体中线(如矢状面时),内踝尖端通常在外踝尖端的前上方,因此踝关节轴与矢状面、额状面和横截面都是倾斜的。

踝关节的关节囊附着于各关节面的周围,囊的前、后壁薄而松弛,两侧有韧带增厚加强。内侧有内侧副韧带(或称三角韧带),为坚韧的三角形纤维索,由起于内踝的前、后部远程的浅层和深层两部分组成。

浅层部分包括胫舟韧带,胫跟韧带(止于跟骨结节上的距骨支持带)和胫距后韧带,深层部分是胫距前韧带,能防止踝关节(距小腿关节)侧向移动。三角韧带极为强厚,所以踝部外翻的扭伤少见,强力的外翻可能在韧带撕裂前,已产生韧带附着处的撕脱或骨折。外侧韧带由三条韧带扇形分布加固关节。相对较弱的距腓前韧带,通过腓骨踝前面,至于距骨上;较长和较强的跟腓韧带,起于外踝表面的近端,止于跟骨外侧表面结节上;距腓后韧带,起于距骨后方突起,水平向后止于腓骨外髁后方突起。

与踝足部运动学有关的肌包括小腿肌和足肌,除腓肠肌和腘肌外都起于近侧的胫骨和腓骨,小腿分为三群:前群肌位于胫骨前缘的外侧,包括胫骨前肌、坶长伸肌、趾长伸肌和第3腓骨肌。外侧群位于小腿的外侧部,所占的区域较小,包括腓骨长肌和腓骨短肌。后群分浅深两层,浅层包括强大的小腿三头肌(腓肠肌和比目鱼肌),深层包括腘肌,趾长屈肌,坶长屈肌和胫骨后肌。

足肌分为足背肌和足底肌。足背肌较薄弱,为伸坶指的坶短伸肌和伸第2-4趾的趾短伸肌,它们的起点和肌腹在跗窦前方的足背外侧面,远侧端分四腱附着于大坶趾近节趾骨的基底部以及第2-4趾的趾长伸腱的外侧边。它们为腓深神经的分支(L2-S1)支配,作用为伸第1-4趾的跖趾关节,并平衡来自外源性伸趾肌的内侧拉力。足底肌分为内侧群、外侧群和中间群,内侧群有坶展肌、坶短屈肌和坶收肌;外侧群有小趾展肌和小趾短屈肌;中间群由浅入深排列有趾短屈肌、足底方肌、4条蚓状肌、3块骨间足底肌和4块骨间背侧肌。它们主要的功能是在行走和跑步时支持足弓,补充长屈趾肌的力和在摆动相中对抗屈肌来保持趾伸直。

足的稳定机制
足的稳定机制中比较重要的结构是足弓,包括内外侧纵弓和横弓系统。

外侧纵弓系统较低、较短,由跟骨、骰骨和外侧的两块跖骨构成,弓的最高点在骰骨。外侧纵弓的运动幅度非常有限,活动度较小,适于传递重力和推力,而不是吸收这些力。较长、较高的内侧纵弓是由跟骨、距骨、舟骨、3块楔骨和三块内侧跖骨组成,弓的最高点为距骨头。

内侧纵弓前端的承重点在第1跖骨头,后端的承重点在跟骨结节。内侧纵弓比外侧纵弓高,活动性大,更具有弹性。横弓是由骰骨、3块楔骨和跖骨连结构成,弓的最高点在中间楔骨。横弓呈半穹隆形,其足底的凹陷朝内,当两足紧紧并拢时,则形成一完整的穹隆。横弓通常时由跖骨头传递力,腓骨长肌腱是维持横弓的强大力量。

足纵弓本质上是不稳定的,由关节周围强大的韧带加固。在负重情况下,纵弓拱形略有减小,但在短时间内,足跖侧韧带结构的强大张力有能力保足弓不被压垮。对安静站立期间的EMG研究结果表明:固有肌几乎不参与维持足弓结构的稳定性。同时足弓还靠足底腱膜进一步加固。足底腱膜起于跟骨结节,向远程延伸,止于所有足趾近侧跖骨的基底部。

经典理论认为跖腱膜起着绞盘的动作机制,它主要对足内侧起作用,切除近节趾骨或跖骨头就会造成这一功能丧失。如果采用胫骨上施加向下作用力,在跟腱上施加向上作用力的方式模拟人体站立姿态,可以发现:作用的负荷部分是由跗、跖骨形成的弓形提供的力矩分担,另一部分是由足底腱膜承担。足弓的维持除了依靠骨性结构,静力性韧带-筋膜的支持外,动力性肌收缩(足的动态支撑)对维持足弓也起着重要作用。

在足底,所有的足外肌和大多数的足固有肌都经过足弓下面,当闭链运动时肌收缩,所产生的力可紧张足弓。趾短屈肌,拇趾外展肌和小趾外展肌分别对内纵弓和外纵弓起到稳定作用;拇长屈肌、趾长屈肌(非固有肌)并不直接起到加固足弓的作用,这些肌肉有助于足跟内翻和保持踝关节处于跖屈位置。

胫骨前、后肌和腓骨长肌却有维持足弓的直接功能。这些肌肉的肌腱平行于韧带行走,止于第一楔骨和第一跖骨的基底区域。肌肉从足的内侧、外侧以及足底包裹,对限制足的近侧部分运动有较强的作用。腓骨长肌和胫骨后肌束止于骰骨上,与拇短屈肌的斜头和横头一起维持足横弓,并加固内、外纵弓之间的连接。足弓也可能通过胫骨外旋、跟骨内翻和脚前掌内收动作形成的单个关节微小转动中获得附加支持。

足弓增加了足的弹性,使足成为具有弹性的“三脚架”。人体的重力从踝关节经距骨向前、后传递到跖骨头和跟骨结节,从而保证直立时足底着地支撑的稳固性,在行走和跳跃时发挥弹性和缓冲震荡的作用。足弓还可保护足底的血管、神经免受压迫,减少地面对身体的冲击。

足的运动学和动力学
前面讲到踝关节的基本运动是背屈和跖屈,转动轴通过内、外踝尖点下方,从前、内侧延伸到下、后、外侧 ,与矢状面、额状面和横截面倾斜。

背屈和跖屈的正常活动范围分别是0-20°和0-55°。完全背屈是踝关节的紧缩位,因此附加运动仅发生于跖屈。内外踝连结稳固,因此正常距骨可被动在前后方向移动2-3mm,过度的向前或向后的运动分别被称为前屉征和后屉征,这提示有韧带的松弛或破坏的可能。由于构成踝关节的距骨滑车前宽后窄,当背屈时,较宽的滑车前部嵌入关节窝内,踝关节较稳定;当跖屈时,由于较窄的滑车后部进入关节窝内,足能作轻微的侧方运动,关节不够稳定。所以踝关节扭伤多发生在跖屈(如下山、下坡、下楼梯)的情况。

足的近端由附骨组成,从运动学看,静态的纵弓系统是构成不同关节独立运动形成的所谓闭合运动链系统的部分。距骨、跟骨、骰骨和舟骨的力学耦合是闭合运动链的需要,因此称为跗骨机构。这些关节周围的韧带,尤其是距腓韧带的水平纤维是这一机构中的关键结构元素。

跗骨机构中距下关节、距舟关节和跟骰关节是足内翻、外翻运动的主要关节。距下关节转动轴斜向定位,与矢状面上的水平轴大约成4l°角,与横截面上的足正中线成23°夹角。因此,通过这一关节传递的力使足内翻转动时相对于胫骨正交轴略有跖屈和内收,外翻时略有背屈和外展,同时伴随关节转动还有平移运动发生。

距舟关节位于足的后内侧,具有球窝关节特征,有较大的活动性,足内翻可以引起这个关节的最大转动。跟骰关节位于足的下方外侧,可以归为有较大平移运动的鞍状关节。距舟关节和跟骰关节联合构成跗横关节,又称肖帕尔关节(Chopart关节),它同第二、第三楔骨与趾骨之间的关节共享一个连续的滑液腔。与这些关节关联的骨都是由较强大的背侧、跖侧和骨间韧带组织连接起来,因此,它们之间相对不动。当近端产生的力和运动通过这些组件向远程传递时,可以近似看作单纯传递,即这些约束性关节并不改变所传递的力和运动。

由于没有肌肉直接运动距骨,通过踝关节韧带和关节接触面传递的力必然使距骨运动。水平排布的距腓前韧带纤维是使距骨外旋的重要机构,借助于跗骨机构将其转换为足的内翻。因此,通过这一机构,在趾长屈肌配合下,胫骨后肌是有效的内翻运动肌,而腓骨肌和趾长伸肌有相反的功能效果。胫骨前肌内翻作用较小,拇指外展肌是一个直接作用于跗骨机构上的足固有肌,该肌近端起于跟骨,向前延伸止于机构的远程组件,因此它有显著的内翻效果。

从跗骨机构可以透视出踝关节稳定性。一个广泛为人们接受的理论是:由于距骨机构的存在,韧带在足跖屈时有以下作用,即踝关节稳定性主要是由三角韧带的胫舟部和外侧韧带保证。外侧韧带通过施加一个均匀性韧带作用力维持着距骨与胫腓骨关节面之间的固有稳定性。当足跖屈时,所有的外侧韧带纤维紧张,会出现内翻和内收运动。在步行的开始阶段,这一运动是由踝关节内侧的固有跖屈肌群动态协助完成的,这些肌群像踝关节和足的非固有肌群一样在整个支撑时相都是主动收缩的。

由于距骨机构的存在,在无肌肉收缩情况下的被动跖屈期间,距骨相对于胫腓骨下关节面也不是自由运动的。距腓前韧带和有类似走向的三角韧带纤维在足跖屈时产生应力,同样对踝关节稳定性有贡献。在足背屈时,中、后部韧带纤维的内、外侧牵拉起着主导作用。因此,踝关节稳定性差异是与韧带力量大小、踝关节和跗骨机构的转动轴定向以及平移运动的个体间差异相关。

在日常活动中,主要是由足的内外侧地面反作用力和促使下肢内外旋转的力诱发这些关节运动的。单纯的小腿横向转动或同时发生的转动与侧向滑移都会由跗骨机构转换为足的内外翻运动。

骰骨和3块楔骨与5块跖骨基底部关节形成跗跖关节,属平面关节,可作轻微滑动。跗跖关节区域的一个显著功能性解剖特征就是第二跖骨与其周围的跗骨连接具有相对活动性,而其它跖骨都是不可动的。由于第二跖骨的基底部“锁”在楔骨形成的关节窝内,足的远程部分可以绕第二跖骨形成的纵长轴扭转,这种扭转运动主要由跗跖关节决定。在距舟关节和跟骰关节参与下就形成了足掌的内翻和外翻转动。三个外侧跖骨各自在一定范围内的微小滑移、第一跖骨在背侧和跖侧方向的转动和滑移等形成了足的跖骨部分形状扭转变化。

跖趾关节由跖骨头与近节趾骨底构成,可作轻微的屈、伸、收、展运动。足趾弓的动态稳固性质对趾弓的支持和足的内外翻功能起着决定作用。五个跖趾关节与其趾骨链形成了五个独立的活动机构,每个跖趾关节和脚趾的多关节链在抵抗外力时的稳定机制与手相似。在足着地最后阶段中产生主要作用力的趾短屈肌和趾间肌对保持趾弓十分重要,有力的拇外展肌、内收肌和短屈肌不仅起着稳固第一跖关节作用,而且由于这些肌肉起点特殊同时有稳定楔骨连接、甚至近端关节的功能。

总的来说,在踝关节和足的开链和闭链运动中所有的跗骨间关节和跗跖关节都有小量但很重要的运动。这种运动提供足弓在行走和跑步足的柔性和足的刚性,这种小运动的重要性也可在没有跗部运动的病理情况得到证实,如跗骨间关节外科融合或戴上假肢,这些患者在足跟冲击后足底就可能倾斜,这些不正常的力就可导致膝关节和跗跖关节代偿性过度运动

下一代储能电池竞争力几何?

新能源Leader

发布时间: 03-05
09:54
科学达人,优质创作者
锂离子电池凭借着出色的性能和具有竞争力的价格等优势,在过去的三十年中在消费电子和储能等领域取得了巨大的成功,但是目前锂离子电池的能量密度已经接近极限,继续提升的空间有限,因此科学界和产业界开始将目光转向下一代的储能电池。

目前研究较多的新型储能电池主要包括
金属锂全固态

Li-S

Li
-
空等,近日德国明斯特大学的
Fabian
Duffner
(第一作者,通讯作者)和
Richard
Schmuch
(通讯作者)等人对于新型储能电池的技术特点和制造过程进行了分析,并与锂离子电池进行了对比


锂离子电池经过三十年的发展,在技术上得到了长足的发展,成本大幅降低,2019年锂离子电池的产能已经达到160GWh/年,并且预计到2030年将进一步增加至1500GWh/年。

近年来为了满足对于高能量密度的进一步需求,人们开发了多种新型的储能电池,这些电池能量密度最高可达1200Wh/kg以上,体积能量密度可达800Wh/L以上,同时这些电池还通过采用低成本的原材料(如Na、S和O等)获得了低成本的优势,下表中作者对比了主要的几种新型储能电池的优劣势。

下图中作者将几种主要的新型电池的材料和电池结构与锂离子电池进行了对比,之所以选择这几种电池主要是因为由于锂资源的限制Na离子电池被认为是一种取代锂离子电池的选择,而Li-S电池的理论能量密度可达2510Wh/kg以上,远高于传统的锂离子电池,全固态电池被认为是解决锂枝晶生长和改善电池安全性的有效方法,因此近年来得到了广泛的关注。Li-空电池由于正极直接来自空气中的O2,因此理论能量密度可达3400Wh/kg,是目前能量密度最高的电化学体系。


离子电池

锂离子电池的主要构成要素包括正极材料、负极材料,以及隔膜和电解液等,其中正极材料主要是层状结构的含锂金属氧化物(LiMO2),负极一侧主要是人造和天然石墨,电解液主要是碳酸酯类电解液,隔膜主要是多孔聚烯烃隔膜,正极集流体为Al箔(12um),负极集流体为铜箔(8um)。

钠离子电池

钠离子电池的工作原理与锂离子电池类似,但是钠离子电池的载流子为Na+,与锂离子电池不同的是Na在常温下不会与Al形成合金,因此在钠离子电池中我们可以采用Al箔作为负极集流体,从而降低电池成本和电池重量。但是由于Na+的离子半径较大,常规的石墨负极储Na能力较差,因此需要采用硬碳类材料作为负极,因此增加了钠离子电池的成本。除此之外,正极材料和电解液设计均与锂离子电池类似。

Li-S
电池

在Li-S电池一般采用纳米结构的S-碳复合材料作为正极,已改善S的正极导电能力,采用金属锂作为负极,S正极的理论比容量为1675mAh/g,因此理论上Li-S电池具有极高的比能量,但是由于其工作依赖于反应生成的多硫化物在电解液中的溶解,从而将新鲜的正极裸漏出来,因此需要较高的电解液注液量,限制了电池能量密度的提升。

金属

负极的全固态电池

金属锂负极的理论比容量可达3860mAh/g,是一种的理想的负极材料,但是金属锂在反复的充放电过程中由于局部极化的存在,会引起枝晶生长的问题,导致电池循环性能和安全性能的劣化。而固态电解质具有较高的机械强度,被认为是解决金属锂负极锂枝晶生长的有效方法,因此通过全固态电解质的采用,可以使得锂离子电池的能量密度达到350Wh/kg以上,但是目前固态电解质还存在氧化物、硫化物类电解质接触电阻大,聚合物电解质离子电导率低等问题,此外全固态电池的生产工艺也是一项非常大的考验。

Li-
空电池

Li-空电池包含多孔的空气正极,可以从空气中直接获取正极材料O2,负极材料则选择金属锂。但是目前Li-空电池还存在较多的问题有待解决,例如空气中除了O2外还存在较多的其他气体(如N2、CO2和H2O等),反应过程会产生Li3N、Li2CO3和LiOH等副产物,影响空气电极的可逆性。因此为了实现Li-空电池的应用,还需要对电池结构设计等进行较多的研究。

除了上述电池体系上的区别,作者还对几种电池生产过程进行了对比,由于采用了新的体系和材料,因此在生产工艺上也需要进行较多的调整。作者将整个生产过程分为了三个大的过程:1)电极制备;2)电池生产;3)化成。

负极制备

对于锂离子电池和钠离子电池的石墨负极和硬碳负极而言,生产流程基本一致,主要是将活性物质、粘结剂、导电剂和溶剂混合在一起,然后将混合好的浆料涂布在金属箔的表面,电池的成本和电池重量,正负极会采用较薄的Al箔(12um)和Cu箔(6um),涂布采用双面涂布的工艺,涂布速度一般控制之在25m/min到50m/min之间,最快可达100m/min,再进行碾压获得理想的孔隙率。为了满足不同电池的需求,还需要对碾压后的电极进行分切,为了降低电极中的水分还需要对分切后的电极进行真空烘干。未来随着技术的发展,还可能将超级电容器生产过程中采用的干法电极工艺应用在锂离子电池生产的过程。

对于Li-S、全固态和Li-空电池,负极采用金属锂,由于金属锂负极具有很强的反应活性,因此为了保护金属锂负极,生产过程需要在保护气氛中进行,例如氩气。金属锂负极的生产过程首先要将金属锂胚碾压为长条型,然后采用碾压机将其碾压为一定厚度的锂箔,然后锂箔覆盖在铜箔的两侧。在金属锂负极使用前还需要对其表面进行钝化处理,以使其能够满足在干燥间使用的要求。常见的金属锂钝化工艺主要包括气体处理、聚乙烯层、表面氟化等工艺,在组装入电池后也能够抑制锂枝晶的生长。

正极制备

对于锂离子电池、钠离子电池和Li-S电池其正极材料的制备工艺与石墨负极的工艺路线基本一致,而对于全固态锂离子电池正极制备则存在一定的区别,首先全固态电池正极材料主要由集流体、活性物质、固态电解质和导电剂构成,部分的固态电解质直接与正极材料混合,用以在正极材料内部传导锂离子。由于活性物质和固态电解质颗粒的接触阻抗较大,因此为了保证正负极材料与固态电解质颗粒之间良好的接触,一般对于氧化物电解质会增加低温烧结的工艺,保证良好的接触。由于氧化物固态电解质会与空气中的水分发生反应,在其表面生成Li2CO3等杂质成分,引起离子电导率降低,因此烧结后的正极需要在干燥间环境或保护气氛下生产。

固态电解质一般需要通过涂布工艺先制作为薄片,然后采用激光切割的方式制成合适的形状,然后与正极进行压合,然后再在低温下进行烧结,以保证良好的界面接触,但是这种工艺进能够在实验室制备小型电池,如何进行规模化生产仍然面临巨大的挑战。

Li-空电池的正极与其他电池存在显著的区别,这主要是因为Li-空电池的正极需要作为空气中的氧气的还原活性点,同时还需要由足够的孔隙存储反应产物,同时还需要减少空气中水分对于反应产物的影响。

电池制造

对于锂离子电池和钠离子电池,其电池的装配工艺完全一样,Li-S电池和Li-空电池显著的特点是采用了金属锂负极,因此电池生产过程中需要根据金属锂负极较为柔软的特性,对工艺进行优化设计。而对于Li-空电池,由于需要从空气中获取氧气,因此再电池设计上与传统的锂离子电池存在显著的区别,处理传统的正负极之外,还需要由气体扩散层,保证O2的供应。

电池化成

对于锂离子电池和钠离子电池化成主要通过反复的充放电,在负极表面形成良好的SEI膜,从而保证良好的循环稳定性。对于Li-S电池和Li-空电池,其初始状态即为电状态,因此电池注液后金属锂负极就开始形成SEI膜,但是为了获得良好的SEI膜,仍然需要进行一定的化成工艺处理。对于全固态锂离子电池而言,如果金属锂负极表面已经覆盖了具有良好稳定性的SEI膜,化成过程则是非必须的,而如果金属负极没有形成良好的界面保护层,则需要进行化成,但是这一过程需要避气体的产生。

成本

从成本的角度,由于锂离子电池成熟的产业链体系,无疑是目前成本最低的储能电池方案,对于钠离子电池而言,主要的生产工艺与锂离子电池类似,但是由于钠离子电池能量密度较低,因此会导致电池的生产成本提升15%以上。对于Li-S电池、Li-空电池和全固态电池而言,由于较高的能量密度,因此同样的能量需要的电池更少,但是由于采用了大量的新工艺,导致这些电池成本较高,有报道这些电池的成本可到300-400Wh/kg以上,远高于锂离子电池。

虽然目前新型电池的研究火热,在某些指标上新型电池相对于锂离子电池具有一定的优势,但是要全面取代锂离子电池,需要在成本、能量密度、循环寿命、安全性等方面对锂离子电池具有全面优势,新型电池仍然任重道远。

#艺# 独一无二的树皮魅力
桦细工并不像我们想的那样简单,它涉及到许多专业的知识和成熟的技艺。首先所选用的樱花树必须是树龄50年以上老山樱花树种,从老樱花树上割下厚1-2厘米的树皮,一是注重卓越的品质,而且保护生态不会伤害树木本身。将剥下来的野樱花树皮洗净后晒干使它们的厚度一致,由于树皮不能伸缩,柔软度也很有限,是又花时间又花劳力的一项工艺。


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 大概事件请看前天的发文:虽然他们之间的事是技术秘密,但作为知识产权人,我们也还是先看一下尊湃这个公司有多少知识产权。另外再看看小米深夜发文的声明:就声明中的几个
  • 可能我和她不一样的地方在于,她擅长自我疗愈,摔倒了就会爬起来继续跑,我擅长自我麻痹,我会避开所有让我难过的事,不去想它,自然也就失去了弥补遗憾的机会。[悲伤]因
  • 五人亦均有現身場刊照拍攝現場,傅嘉莉當日穿上價值6位數的女配角戰衣,不止高貴大方,手工及設計亦相當特別,讓人更期待其頒獎禮正日的衣著。傅嘉莉及劉穎鏇的潛力亦不容
  • 先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。  将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰能,是以众议举宠为督。
  • 市政厅的文化交流结束后,花城苑的厨师团队受邀参观了当地的火腿和香肠工厂、并与GUJUELO的大师一起切火腿并品尝葡萄酒,让团队对“伊比利亚火腿”产生了全新的认识
  • 我爱了!!
  • 三位小提琴演奏家的投入专注,特别那位大提琴手,最开始头以一种姿势在左边望去,看到我的到来,他思绪开始活跃起来,真是服了他,左顾右盼,幽默的用眼神调侃,一点也
  • 。。
  • 看文学或影视作品,总会觉得那些把女主推出去的男主,或者把男主推出去的女主应该“自私”一点,应该多为自己、为两个人争取一下,但困难摆在那里,不是你说能克服就能克服
  • 头像女 ​​​ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
  • 是否接受异地:否年龄(几几年):04身高(cm):162体重:未知(微胖城市:驻马店驿城区学历:本科职业:学生自我介绍:性格开朗,为人温暖的infp,积极上进喜
  • 书中做了个类比,我们都会背《静夜思》但你知道吗,其实李白最初的写的是:床前看月光,疑是地上霜。当时流行一种文字游戏,用1000个不重复的汉字,连缀成完整的诗文,
  • 根据美国知名土地所有者杂志The La­nd Re­p­o­rt的最新排名,陈天桥以坐拥198,000 英亩(约801平方公里)的俄勒冈林地,比两个北京四环面积
  • 这个趋势在24年必然会愈演愈烈,冥王星还会逆回摩羯,年底再次进入到水瓶,明年推崇的商业的模式也会变得很复杂,一会是重新让你去复兴那种流量加模式的老路子,一边是让
  • 禅门宗风竟有如此趣闻:云门饼、一指禅、临济喝… 在佛教中,宗风通常指佛教各宗特有的风格、传统。 自从灵山会上,世尊拈花示众,迦叶尊者破颜微笑,禅法一脉相传至
  • #任嘉伦[超话]# L不一定每天都很好但每天都会有些小美好在等你[抱一抱]时间匆忙,岁月漫长不忘初心,怎惧时光有幸,长路漫漫不曾更改只要你在,三生期待[心][心
  • 三国志 草莽之卷 著作者:吉川英治(吉川英治,生于1892年8月11日,日本神奈川县。逝于1962年9月7日,享年70岁。他是一位留下众多小说作品的有名文学家
  • 难怪昨天大家一致认为他们的氛围不一样了,这期间肯定进展神速,好家伙,原来是拍了杂志,这互动真的很难不心动啊,其实拍完后时隔一年从去hi6到扫楼,都可以看出他俩是
  • 说起泰格豪雅的复刻表系列最早做的是V6工厂,后来是XF工厂,这两个工厂做泰格豪雅的竞潜系列或者是卡莱拉系列都是十分不错的,优秀的品质和出色的做工得到了大家的肯定
  • 可关注公众号:上海普心说带飞龙王子出去关门的一刹那才想起来钥匙没拿,但也晚了,每天出门念叨一遍:手机、钥匙、狗、鞋、我,今儿早起来有点头疼,迷迷糊糊也忘了念叨了