【冰有弹性,可弯曲?科学家用冰制备光纤】生长成单晶微纳光纤的冰,居然在性能上与玻璃光纤相似,既能够灵活弯曲,又可以低损耗传输光。浙江大学光电学院教授童利民团队在长期研究中发现了这种奇妙的现象。他们联合来自交叉力学中心和加州大学伯克利分校的合作者,实现用冰制备光纤,相关成果https://t.cn/A6fK9Vey于7月9日发表于《科学》。

△ 从不可能到可能

在人们的常识中,冰是一种透明易碎的脆性物质,没有弹性、无法弯折。

从古至今,人类对冰的好奇心从未停息,人们对冰进行了广泛深入的研究,从冰的高压相、二维结构等新形态,到电子束光刻等应用探索,对冰的认识和应用能力得到了很大的提升。

但能否用冰来制备光纤?在长达4年的研究中,童利民团队给出了肯定答案。

图1:研究团队生长的直径均匀的冰单晶微纳光纤。

我们通常认为,冰是一种脆性的易碎物质,已有的实验数据也支持上述认识,目前实验测到的冰的最大弹性应变为0.3%左右,大于这个值就会碎裂。

虽然理论计算曾预测,理想情况下,冰的弹性应变极限有可能大于10%,但是真实冰晶中由于存在结构缺陷,能够达到的应变值远低于理论极限。

另一方面,光纤作为一种将光约束和自由传输的功能结构,是目前光场操控最有效的工具之一。将标准光纤直径减小到波长甚至亚波长量级,成为微纳光纤,提升或引入光场在空间约束、近场相互作用、表面增强、波导色散及光动量效应等方面的调控能力,在近场耦合、光学传感和量子光学等方面具有独特优势,是目前光纤领域的前沿研究方向之一。

微纳光纤的光场调控能力,很大程度上取决于光纤材料的结构形态及其光场响应特性。常规的玻璃光纤,主要成分为氧化硅(石英沙),是地壳中含量最丰富的材料之一,在光传输中具有宽带低损耗等优异特性,被“光纤之父”高锟先生称为“古沙传捷音”。 实际上,在地球及很多地外星球表面,比沙更普遍的物质是冰或液态水,童利民团队提出能否用冰来制备光纤?

△ 首次实现冰的弹性弯曲

“这是一个令人好奇的、有趣的问题,大约8年前,我和通讯作者之一、浙大光电学院副教授郭欣就讨论过这个想法,但由于所涉及的实验条件和技术要求很高,一时难以开展。” 2017年,在讨论二年级博士生许培臻的研究方向时,童利民再次提到了用冰来制备光纤这个想法,成果第一作者之一、当时正在准备本科毕设的崔博文,也加入了这个项目。童利民说,他们专注的研究态度和出色的实验动手能力,为实现这个想法提供了可能性。

另外,当时学校刚成立了冷冻电镜中心,为低温下的结构表征提供了研究条件。

在这项研究中,结构制备是关键的第一步。研究团队自行搭建了生长装置,在大量实验基础上,改进了已有的电场诱导冰晶制备方法,成功生长了直径从800纳米到10微米的高质量冰单晶微纳光纤。在冷冻电镜下,验证了这些沿c轴生长的冰单晶微纳光纤具有很好的直径均匀性和表面光滑度。

“作为光纤,必须能够自由弯曲,才会更有用。”童利民说。为了探索冰微纳光纤的力学性能,研究团队发明了一套低温微纳操控和转移技术,实现了液氮环境下微纳结构的灵活、精确操控。在零下150℃的冰微纳光纤中,获得了10.9%的弹性应变,接近冰的理论弹性极限(远高于此前报道的最高0.3%的应变实验值),实现了冰微纳光纤的灵活弯曲。

△ 未来应用潜力广泛

冰的分子结构随压强改变而发生相变,一直是研究者们感兴趣的问题。

但是,由于产生相变所需的压强通常在数千个大气压以上,需要使用特殊设计的金刚石压砧等设备来获得,实现条件不易。

研究团队发现,通过大应变弯曲冰微纳光纤,有可能为相变所需的高压提供一种简单的解决方案。“拉曼光谱是检测相变最灵敏的方法之一,我们现代光学仪器国家重点实验室在光谱测量技术方面有很好的基础。”郭欣说。

为此,研究团队研制了一套结合低温微纳操控的原位显微拉曼光谱测量系统,通过弹性弯曲冰微纳光纤并原位实时测量最大应变区域的拉曼光谱,发现应变超过3%时,就可以出现冰从Ih相(常压相)转变为II相(高压相之一)的特征拉曼峰。

同时,通过弹性弯曲还可以为冰施加超过一万个大气压的负压,这是目前其他实验方法难以做到的。因此,上述弹性弯曲技术为冰的相变动力学研究提供了一种新的实验方法。

更进一步,材料对光场的响应特性取决于其组成元素、分子结构及其排列方式。研究团队预测,由H2O分子规则排列而成的冰单晶微纳光纤,在光的操控方面具有潜在优势。为了测试其光学特性,团队利用其此前发明的近场耦合输入技术,在可见光波段实现了冰微纳光纤的宽带光传输,传输损耗低达0.2dB/cm,与目前高质量平面波导相当,这种光操控能力为微纳光纤用于低温光学导波与传感提供了新的技术可能。

由于理想冰单晶在可见光波段具有极低的吸收和散射特性,进一步优化制备和测试条件,将有可能在冰微纳光纤实现超低损耗光传输。

论文评审专家认为这项研究是“对冰物理认识的重大进步”,所展现的力学和光学特性“无疑是有趣的、独特的,具有潜在的实际应用价值”。

童利民认为,对于冰这样一种自然界中最普遍、但又最神奇的物质,相信该项研究结果将拓展人们对冰的认知边界,激发人们开展冰基光纤在光传输、光传感、冰物理学等方面的研究,以及发展适用于特殊环境的微纳尺度冰基技术。https://t.cn/A6fK9VeL

【冰有弹性,可弯曲?科学家用冰制备光纤】生长成单晶微纳光纤的冰,居然在性能上与玻璃光纤相似,既能够灵活弯曲,又可以低损耗传输光。浙江大学光电学院教授童利民团队在长期研究中发现了这种奇妙的现象。他们联合来自交叉力学中心和加州大学伯克利分校的合作者,实现用冰制备光纤,相关成果https://t.cn/A6fK9Vey于7月9日发表于《科学》。

△ 从不可能到可能

在人们的常识中,冰是一种透明易碎的脆性物质,没有弹性、无法弯折。

从古至今,人类对冰的好奇心从未停息,人们对冰进行了广泛深入的研究,从冰的高压相、二维结构等新形态,到电子束光刻等应用探索,对冰的认识和应用能力得到了很大的提升。

但能否用冰来制备光纤?在长达4年的研究中,童利民团队给出了肯定答案。

图1:研究团队生长的直径均匀的冰单晶微纳光纤。

我们通常认为,冰是一种脆性的易碎物质,已有的实验数据也支持上述认识,目前实验测到的冰的最大弹性应变为0.3%左右,大于这个值就会碎裂。

虽然理论计算曾预测,理想情况下,冰的弹性应变极限有可能大于10%,但是真实冰晶中由于存在结构缺陷,能够达到的应变值远低于理论极限。

另一方面,光纤作为一种将光约束和自由传输的功能结构,是目前光场操控最有效的工具之一。将标准光纤直径减小到波长甚至亚波长量级,成为微纳光纤,提升或引入光场在空间约束、近场相互作用、表面增强、波导色散及光动量效应等方面的调控能力,在近场耦合、光学传感和量子光学等方面具有独特优势,是目前光纤领域的前沿研究方向之一。

微纳光纤的光场调控能力,很大程度上取决于光纤材料的结构形态及其光场响应特性。常规的玻璃光纤,主要成分为氧化硅(石英沙),是地壳中含量最丰富的材料之一,在光传输中具有宽带低损耗等优异特性,被“光纤之父”高锟先生称为“古沙传捷音”。 实际上,在地球及很多地外星球表面,比沙更普遍的物质是冰或液态水,童利民团队提出能否用冰来制备光纤?

△ 首次实现冰的弹性弯曲

“这是一个令人好奇的、有趣的问题,大约8年前,我和通讯作者之一、浙大光电学院副教授郭欣就讨论过这个想法,但由于所涉及的实验条件和技术要求很高,一时难以开展。” 2017年,在讨论二年级博士生许培臻的研究方向时,童利民再次提到了用冰来制备光纤这个想法,成果第一作者之一、当时正在准备本科毕设的崔博文,也加入了这个项目。童利民说,他们专注的研究态度和出色的实验动手能力,为实现这个想法提供了可能性。

另外,当时学校刚成立了冷冻电镜中心,为低温下的结构表征提供了研究条件。

在这项研究中,结构制备是关键的第一步。研究团队自行搭建了生长装置,在大量实验基础上,改进了已有的电场诱导冰晶制备方法,成功生长了直径从800纳米到10微米的高质量冰单晶微纳光纤。在冷冻电镜下,验证了这些沿c轴生长的冰单晶微纳光纤具有很好的直径均匀性和表面光滑度。

“作为光纤,必须能够自由弯曲,才会更有用。”童利民说。为了探索冰微纳光纤的力学性能,研究团队发明了一套低温微纳操控和转移技术,实现了液氮环境下微纳结构的灵活、精确操控。在零下150℃的冰微纳光纤中,获得了10.9%的弹性应变,接近冰的理论弹性极限(远高于此前报道的最高0.3%的应变实验值),实现了冰微纳光纤的灵活弯曲。

△ 未来应用潜力广泛

冰的分子结构随压强改变而发生相变,一直是研究者们感兴趣的问题。

但是,由于产生相变所需的压强通常在数千个大气压以上,需要使用特殊设计的金刚石压砧等设备来获得,实现条件不易。

研究团队发现,通过大应变弯曲冰微纳光纤,有可能为相变所需的高压提供一种简单的解决方案。“拉曼光谱是检测相变最灵敏的方法之一,我们现代光学仪器国家重点实验室在光谱测量技术方面有很好的基础。”郭欣说。

为此,研究团队研制了一套结合低温微纳操控的原位显微拉曼光谱测量系统,通过弹性弯曲冰微纳光纤并原位实时测量最大应变区域的拉曼光谱,发现应变超过3%时,就可以出现冰从Ih相(常压相)转变为II相(高压相之一)的特征拉曼峰。

同时,通过弹性弯曲还可以为冰施加超过一万个大气压的负压,这是目前其他实验方法难以做到的。因此,上述弹性弯曲技术为冰的相变动力学研究提供了一种新的实验方法。

更进一步,材料对光场的响应特性取决于其组成元素、分子结构及其排列方式。研究团队预测,由H2O分子规则排列而成的冰单晶微纳光纤,在光的操控方面具有潜在优势。为了测试其光学特性,团队利用其此前发明的近场耦合输入技术,在可见光波段实现了冰微纳光纤的宽带光传输,传输损耗低达0.2dB/cm,与目前高质量平面波导相当,这种光操控能力为微纳光纤用于低温光学导波与传感提供了新的技术可能。

由于理想冰单晶在可见光波段具有极低的吸收和散射特性,进一步优化制备和测试条件,将有可能在冰微纳光纤实现超低损耗光传输。

论文评审专家认为这项研究是“对冰物理认识的重大进步”,所展现的力学和光学特性“无疑是有趣的、独特的,具有潜在的实际应用价值”。

童利民认为,对于冰这样一种自然界中最普遍、但又最神奇的物质,相信该项研究结果将拓展人们对冰的认知边界,激发人们开展冰基光纤在光传输、光传感、冰物理学等方面的研究,以及发展适用于特殊环境的微纳尺度冰基技术。https://t.cn/A6fK9VeL

#主播BLUE[超话]#
刚刚刷抖音看见一个le标视频,里面是个女生刚生产完做病床上看自己的双胞胎女儿,然后下面有人评论这是她俩生的女儿,所谓骨髓干细胞分化成精原,但只能生女儿,因为没有y染色体,然后居然还有很多人信了

????这些相信的人是认真的吗

我一时竟然不知道该说些什么

国家的九年义务教育怕是都教空气去了


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • [哈哈]那个屏幕后面看我视奸的贱人,如果你觉得我吃苦出国留学是奋斗逼行为,嘻嘻 你跟我屁股后面视奸 还得气急败坏拿奋斗逼这茬来膈应我,酸味太重~[哈哈]我骂的是
  • [嘻嘻]一组32张,有需要无水印看下面↓自取方法[嘻嘻] 直接搜 关注丨公众号:幸运情头回复:816笔芯[爱你]提前自取摩斯密码:816更多情头在路上了!不管谁
  • 郭亮村依山势坐落千仞壁立的绝壁上,地势险峻,风光旖旎。郭亮村依山势坐落在千仞壁立的山崖上,地势险绝,景色优美,以绝壁峡谷的“挂壁公路”闻名于世,又被誉为“太行明
  • #郑州轻工业大学[超话]##郑轻新闻# 【艺术设计学院在禹州举行陶瓷文化志愿宣传活动】为宣传民族传统精粹,弘扬陶瓷文化,艺术设计学院在禹州花石镇观音堂小学开展陶
  • 关于浪漫文案|“晚霞尤其温柔,人间皆是浪漫,要陪在值得的人身边,一年又一年”“想做胶囊里的药,温水洗暖,医好你的感冒”“我无法被道理和逻辑安慰 真正能安慰到我的
  • #A股##基金#本该是个悠闲的假期,心情一下被老公破坏了,烦的不行,上午送橙子去上课,本来要带小宝一起去,结果下雨了,不太方便,就想老公在家哄小宝睡觉算了,结果
  • 国际顶级艺术家Anish Kpoor(安尼施·卡普尔)来深圳啦[赞R]虽然不太懂 但也来体验一下当代艺术魅力 太OK啦❗️拍了不少美照相框️都放不完[萌萌哒R]
  • 还有一张是在机场吃的另一家店的奶油夹心饼,不好意思但是六花亭的确实好吃很多。之后比较麻烦的事情是吃过这么多好吃的回到横滨的山里看到山里的东西emmmmm...余
  • 《爱过、痛过、哭过之后》 臣服的体验三,若菱回溯老人的一些教导她知道觉得自己不够好的想法来自于我们和真我分離的结果但是无論在理性知性层面多么清楚了解若菱的自尊心
  • 虽然三家机构用户规模都实现过亿,不过对比每个季度的增长数据不难看出,都面临着新增获客放缓的问题。其中不乏有一些亮点数据,三者同样在去年下半年表现强劲,在最后一个
  • 准妈妈入院后:医生会观察羊水流失情况和查看胎儿发育情况,然后再对孕妈妈进行诊治,最后会根据准妈妈的具体情况 选择保胎治疗或者终止妊娠 让胎儿提前出生。准妈妈入院
  • 据悉,24日,为了纪念女儿的周岁,CHEN和妻子在首尔新罗酒店迎宾馆举行了只与家人和少数亲近的熟人参加的周岁宴。【N】记者出身油管博主公开了CHEN女儿周岁宴的
  • 我最喜欢的汉堡是这五个家伙怎么比都没得比的。最早的知名空调企业实际上是春兰,格力真正胜出,大概是在 2007年,其实我们在这以后的任何年份买人并长期持有格力,
  • 善心人人有,快乐你我他。人要知足常乐,什么事情都不能想繁杂,如果你简单,这个世界就对你简单。
  • 那么,人工的一面就是艺术作品本身,是艺术家通过激活他的想象力和技术,以及通过运作之前的兴奋所产生的能量而创造出来的一种表现....」完整的系列作品相关文章在KL
  • 有些道理,愿你明白得正是时候——"羸弱的人不快活"一个身体羸[léi]弱的人不能是一个快活的人,你害点小病就知道;也不能是一个心地慈祥的人,
  • 我喜欢黑,也亦喜欢白,两者看似很单调,是这世间最基本简单的存在,但当黑白交织在一起,会融合出神秘强烈高级的感觉,就像小国一样,他简单干净明了,但是总感觉他有一切
  • 2021正逢中国共产党成立100周年,第十三届队员也迎来了首次集体升旗,未来的路任重而道远,坚定理想信念,不忘奋斗初心。真的不敢想象你在成团夜失望的样子。
  • 人要有一颗宽容之心,要能容天下难容之事。智者都是心胸开阔的人,他们懂得如何尊重人。
  • 早就有人建议我:你可以自己把内容也成小册子卖呀(很多人都这么做)他们不知道的是:我国对出版物的管理是非常严格的。小众又温柔的适合表白的情话 1. 你要一直做我的