#GH4169镍基高温合金车削过程中刀具磨损性能的分析#
镍基高温合金具有高温强度高、抗氧化性好、耐热性和耐腐蚀性强等特性,现已被广泛应用于航空航天领域,其主要应用于制作航空发动机的涡轮叶片、涡轮盘和凸轮轴等零部件 。可是,镍基高温合金材料因其导热系数低、塑性变形大等加工特性,常会导致切削力大、切削温度高、刀具磨损严峻和切屑不易折断等现象,很大程度上导致刀具寿数、工件表面质量及生产效率的降低。因而,研讨镍基高温合金切削过程中的刀具磨损特性对航空发动机零部件的生产加工具有重要意义。
1 建立车削有限元仿真模型

1.1 建立工件及刀具几何模型

运用软件树立刀具及工件几何模型。为了对不同磨损量下的刀具进行仿真,树立了不同后刀面磨损量的刀尖几许模型,后刀面磨损量 VB 分别为 0、0.1mm、0.2mm、0.3mm,如图 1 所示。为了保证仿真与实际工况更挨近、仿真功率更高,工件模型树立如图 2 所示的带有预切部分的三维模型。
1.2 刀具和工件的材料设置及网格划分

在本文的有限元仿真模型中,刀尖部分与工件部分分别设置为刚体与塑性体。刀具资料为硬质合金,涂层材料为 TiAlN,涂层厚度为 5μm。工件材料为镍基高温合金GH4169,方程式如下 :
运用有限元仿真软件进行切削仿真时,工件会在切削加工过程中产生塑性变形,网格区分的好坏是仿真模型成功与否的要害,若网格的区分不合理,常会出现网格畸变现象,影响模型塑性变形的迭代收敛性,导致仿真成果的准确性降低,乃至会使仿真无法进行。考虑了仿真精度及效率等归纳要素,本文的网格区分方法运用相对网格区分,并对工件和刀尖部分进行了局部区分,工件网格局部区分比率为 0.5,刀尖网格局部区分比率为 0.1,如图 3 所示。

1.3 摩擦模型及分离准则

在金属切削加工过程中,刀具与工件之间的摩擦不仅规律复杂且不可避免。软件 DEFORM 中提供的摩擦模型有以下 3 种:剪切摩擦模型、混合摩擦模型和库伦摩擦模型。目前,应用较为成熟且适用于模具接触的摩 擦类型为剪切摩擦模型,故本文有限元模型的摩擦类型选用为剪切摩擦模型。剪切摩擦模型方程式:

τf = uk

式中,τf 是摩擦力;k 是剪切屈服极限;u 是摩擦系数 (0 ≤ u ≤ 1)。

分离准则的选择将直接关系到仿真模型能否更 加真实地反映工件材料的物理性能和力学性能。本 文选用模型 Cockroft-Latham 来制定切屑分离准则, 并将临界值 D 设置为 500。

2 有限元仿真结果分析

2.1 刀具磨损对切削力的影响

选取不同后刀面磨损量 VB(0、0.1mm、0.2mm 和 0.3mm)的刀具模型,分别以切削速度 40m/min、进给量 0.1mm/r 和背吃刀量 0.5mm 的切削参数模拟 GH4169 切削过程。图 4 所示为 VB=0 时 X、Y 和 Z 方向切削力 的仿真结果,从仿真结果中可以明显看出,刚步入切削 过程时,X、Y 和 Z 方向的切削力都呈急剧增长趋势,过 了 4.30×10–3s 后,3 个方向的平均力均趋于稳定。仿真 过程中 X 方向切削力为进给方向的分力,Y 方向切削力 为切削速度方向的分力,其数值最大,Z 方向切削力为 切深方向的分力。

图 5 所示为不同后刀面磨损量下 X、Y 和 Z 方向切 削力曲线图。随着后刀面磨损量的增加,切削过程中 的挤压力和摩擦力不断增大,导致切削力也不断增加。 后刀面磨损量 VB 从 0.1mm 到 0.2mm,X、Z 方向的切 削力增幅不是很大,Y 方向切削力有明显增幅,这主要 是由于后刀面磨损量在 0~0.2mm 之间时,刀具处于正常磨损阶段,故 X、Z 方向的切削力增幅不是很大,而 Y 方向切削力为主切削力,故数值增幅明显;当 VB 超过0.2mm 时,X、Y 和 Z 方向的切削力增长趋势都很显著,这主要是由于刀具磨损量增加到一定限度时,刀具达到了急剧磨损阶段,切削力急剧增高,刀具磨损速度加快;当 VB=0.3mm 时,其 Y 方向切削力相对于未磨损刀具增加了 4 倍左右,X、Z 方向的切削力相对于未磨损刀具增加了 2 倍左右。

2.2 刀具磨损对切削温度的影响

图 6 所示为不同后刀面磨损量下的切削温度仿真结果,从仿真结果中明显看出,当后刀面磨损量从 0 增 加到 0.2mm 时,最高切削温度升高了 258℃,这主要是由于随着后刀面磨损量的增加,切削刃变钝,摩擦力增加,热量增加,故刀具与工件接触区的最高切削温度增加。当 VB 到达0.3mm 时,刀具与工件接触区的最高切削温度为681℃,产生该现象的原因是由于刀尖处的磨损量过大导致切削过程中切深减小和接触面积增加,进而导致刀具与工件接触产生的热量变小、散热面积增加。
3 镍基高温合金车削试验验证

3.1 试验设备及装置

为了验证本文有限元仿真模型的准确性,进行了车削试验,图 7 为试验现场布局图。试验所用机床为数控车床,工件材料采用镍基高温合金 GH4169;刀具采用有断屑槽的 CNMG120408-MJ 刀片;切削力的测量采用 KISTLER 的压电式测力仪,压电式测力仪输出的电荷信号经过配套的电荷放大器放大,再经过数采箱实现数据采集;后刀面磨损量的测量采用超景深显微镜。
试验过程中,每次均选用一个未磨损的刀片在切削速度 40m/min、进给量 0.1mm/r 和背吃刀量 0.5mm的切削参数下分别按 13 组时间进行车削试验(13 组切削时间是 0.5~12.5min 内以 0.5min 为时间间隔进行选取的)。试验结束后,通过超景深分别对 13 组刀具进行测量。

如图 8 所示,选择后刀面磨损量约为 0、0.1mm、0.2mm、0.3mm 的 4 把刀片,切削时间分别为 0、2.5min、5min、9min。从已磨损的刀具上可以看出,在磨损区域的刀具呈亮白色,这主要是由于刀具与工件之间摩擦造成的涂层脱落。

3.2 结果分析与讨论

选取不同后刀面磨损量的 4 个刀片,分别以切削速度 40m/min、进给量 0.1mm/r 和背吃刀量 0.5mm 的切削参数下进行切削试验。本文以切削力平均值进行 研究分析,其刀具后刀面磨损加剧,X 方向进给力、Y 方向主切削力和 Z 方向切深抗力均有不同程度的增加。当 VB=0.1mm 时,X 方向的切削力较未磨损刀具增幅25.3%、Z 方向的切削力较未磨损刀具增幅 15.3%,Y 方向切削力增幅最为显著,较未磨损刀具增幅 38.5% ;当VB=0.2mm 时,X 方向的切削力较 VB=0.1mm 时增幅21.7%、Z 方向的切削力较 VB=0.1mm 时增幅 29.4%,Y方向切削力较 VB=0.1mm 时增幅 45.9%;当 VB=0.3mm时,X 方向的切削力较 VB=0.2mm 时增幅 139%、Z 方向的切削力较 VB=0.2mm 时增幅 147.3%,Y 方向切削力较 VB=0.2mm 时增幅 156.9%,相对于未磨损刀具增加了 4 倍多。这主要是由于后刀面磨损量在 0~0.2mm之间时,刀具处于正常磨损阶段,故 X、Y 和 Z 方向的切削力增幅不是很大,当 VB 超过 0.2mm 时,X、Y 和 Z 方向的切削力增长趋势都很显著,这主要是由于刀具磨损量增加到一定限度时,刀具达到了急剧磨损阶段,切削力急剧增高,刀具磨损速度加快。
图 9 为不同后刀面磨损量下切削力的试验与仿真对比图,其中刀具后刀面磨损量 VB=0 时,X、Y 和 Z方向的仿真铣削力误差范围在 6%~8% 之间,精度较高;当后刀面磨损量 VB=0.1mm 时,X、Y 和 Z 方向的仿真铣削力误差范围在 10%~13% 之间,精度较好;当后刀面磨损量 VB=0.2mm 时,X、Y 和 Z 方向的仿真铣削力误差范围在 6%~20% 之间,精度一般;当后刀面磨损量 VB=0.3mm 时,X、Y 和 Z 方向的仿真铣削力误差范围在 15%~25.6% 之间,误差达到最大。随着后刀面磨损量的增加,误差随着增大,其原因一是可以归结于有限元模型建立时相应边界条件的简化;二是由于 GH4169 材料的本构关系模型是通过试验数据拟合而来,具有一定偏差,导致仿真结果与试验数值产生了一定误差。虽然仿真值与试验值有一定误差,然而从整体趋势上看,仿真与试验较为一致。所以建立的有限元仿真模型是符合实际的,对实际加工具有一定的指导意义。仿真与试验结果均表明后刀面磨损量超过0.2mm 时的切削力明显增大,刀具处于急剧磨损阶段,因此在镍基高温合金 GH4169 车削精加工过程中,硬质合金刀具最优加工时间应选择在后刀面磨损量达到0.2mm 之前。

4 结论

本文利用有限元技术和试验相结合的方法,对镍基高温合金 GH4169 的切削过程进行了研究,分析了不同后刀面磨损量下的切削力及切削温度变化规律,得到了如下结论:

(1)随着后刀面磨损量的增加,切削力及切削温度逐渐增加。当 VB > 0.2mm 时,切削力急剧增长,刀具达到了急剧磨损阶段。

(2)镍基高温合金 GH4169 车削精加工过程中,硬质合金刀具的磨钝标准 VB 建议为 0.2mm。

#GH4169镍基高温合金车削过程中刀具磨损性能的分析#
镍基高温合金具有高温强度高、抗氧化性好、耐热性和耐腐蚀性强等特性,现已被广泛应用于航空航天领域,其主要应用于制作航空发动机的涡轮叶片、涡轮盘和凸轮轴等零部件 。可是,镍基高温合金材料因其导热系数低、塑性变形大等加工特性,常会导致切削力大、切削温度高、刀具磨损严峻和切屑不易折断等现象,很大程度上导致刀具寿数、工件表面质量及生产效率的降低。因而,研讨镍基高温合金切削过程中的刀具磨损特性对航空发动机零部件的生产加工具有重要意义。
1 建立车削有限元仿真模型

1.1 建立工件及刀具几何模型

运用软件树立刀具及工件几何模型。为了对不同磨损量下的刀具进行仿真,树立了不同后刀面磨损量的刀尖几许模型,后刀面磨损量 VB 分别为 0、0.1mm、0.2mm、0.3mm,如图 1 所示。为了保证仿真与实际工况更挨近、仿真功率更高,工件模型树立如图 2 所示的带有预切部分的三维模型。
1.2 刀具和工件的材料设置及网格划分

在本文的有限元仿真模型中,刀尖部分与工件部分分别设置为刚体与塑性体。刀具资料为硬质合金,涂层材料为 TiAlN,涂层厚度为 5μm。工件材料为镍基高温合金GH4169,方程式如下 :
运用有限元仿真软件进行切削仿真时,工件会在切削加工过程中产生塑性变形,网格区分的好坏是仿真模型成功与否的要害,若网格的区分不合理,常会出现网格畸变现象,影响模型塑性变形的迭代收敛性,导致仿真成果的准确性降低,乃至会使仿真无法进行。考虑了仿真精度及效率等归纳要素,本文的网格区分方法运用相对网格区分,并对工件和刀尖部分进行了局部区分,工件网格局部区分比率为 0.5,刀尖网格局部区分比率为 0.1,如图 3 所示。

1.3 摩擦模型及分离准则

在金属切削加工过程中,刀具与工件之间的摩擦不仅规律复杂且不可避免。软件 DEFORM 中提供的摩擦模型有以下 3 种:剪切摩擦模型、混合摩擦模型和库伦摩擦模型。目前,应用较为成熟且适用于模具接触的摩 擦类型为剪切摩擦模型,故本文有限元模型的摩擦类型选用为剪切摩擦模型。剪切摩擦模型方程式:

τf = uk

式中,τf 是摩擦力;k 是剪切屈服极限;u 是摩擦系数 (0 ≤ u ≤ 1)。

分离准则的选择将直接关系到仿真模型能否更 加真实地反映工件材料的物理性能和力学性能。本 文选用模型 Cockroft-Latham 来制定切屑分离准则, 并将临界值 D 设置为 500。

2 有限元仿真结果分析

2.1 刀具磨损对切削力的影响

选取不同后刀面磨损量 VB(0、0.1mm、0.2mm 和 0.3mm)的刀具模型,分别以切削速度 40m/min、进给量 0.1mm/r 和背吃刀量 0.5mm 的切削参数模拟 GH4169 切削过程。图 4 所示为 VB=0 时 X、Y 和 Z 方向切削力 的仿真结果,从仿真结果中可以明显看出,刚步入切削 过程时,X、Y 和 Z 方向的切削力都呈急剧增长趋势,过 了 4.30×10–3s 后,3 个方向的平均力均趋于稳定。仿真 过程中 X 方向切削力为进给方向的分力,Y 方向切削力 为切削速度方向的分力,其数值最大,Z 方向切削力为 切深方向的分力。

图 5 所示为不同后刀面磨损量下 X、Y 和 Z 方向切 削力曲线图。随着后刀面磨损量的增加,切削过程中 的挤压力和摩擦力不断增大,导致切削力也不断增加。 后刀面磨损量 VB 从 0.1mm 到 0.2mm,X、Z 方向的切 削力增幅不是很大,Y 方向切削力有明显增幅,这主要 是由于后刀面磨损量在 0~0.2mm 之间时,刀具处于正常磨损阶段,故 X、Z 方向的切削力增幅不是很大,而 Y 方向切削力为主切削力,故数值增幅明显;当 VB 超过0.2mm 时,X、Y 和 Z 方向的切削力增长趋势都很显著,这主要是由于刀具磨损量增加到一定限度时,刀具达到了急剧磨损阶段,切削力急剧增高,刀具磨损速度加快;当 VB=0.3mm 时,其 Y 方向切削力相对于未磨损刀具增加了 4 倍左右,X、Z 方向的切削力相对于未磨损刀具增加了 2 倍左右。

2.2 刀具磨损对切削温度的影响

图 6 所示为不同后刀面磨损量下的切削温度仿真结果,从仿真结果中明显看出,当后刀面磨损量从 0 增 加到 0.2mm 时,最高切削温度升高了 258℃,这主要是由于随着后刀面磨损量的增加,切削刃变钝,摩擦力增加,热量增加,故刀具与工件接触区的最高切削温度增加。当 VB 到达0.3mm 时,刀具与工件接触区的最高切削温度为681℃,产生该现象的原因是由于刀尖处的磨损量过大导致切削过程中切深减小和接触面积增加,进而导致刀具与工件接触产生的热量变小、散热面积增加。
3 镍基高温合金车削试验验证

3.1 试验设备及装置

为了验证本文有限元仿真模型的准确性,进行了车削试验,图 7 为试验现场布局图。试验所用机床为数控车床,工件材料采用镍基高温合金 GH4169;刀具采用有断屑槽的 CNMG120408-MJ 刀片;切削力的测量采用 KISTLER 的压电式测力仪,压电式测力仪输出的电荷信号经过配套的电荷放大器放大,再经过数采箱实现数据采集;后刀面磨损量的测量采用超景深显微镜。
试验过程中,每次均选用一个未磨损的刀片在切削速度 40m/min、进给量 0.1mm/r 和背吃刀量 0.5mm的切削参数下分别按 13 组时间进行车削试验(13 组切削时间是 0.5~12.5min 内以 0.5min 为时间间隔进行选取的)。试验结束后,通过超景深分别对 13 组刀具进行测量。

如图 8 所示,选择后刀面磨损量约为 0、0.1mm、0.2mm、0.3mm 的 4 把刀片,切削时间分别为 0、2.5min、5min、9min。从已磨损的刀具上可以看出,在磨损区域的刀具呈亮白色,这主要是由于刀具与工件之间摩擦造成的涂层脱落。

3.2 结果分析与讨论

选取不同后刀面磨损量的 4 个刀片,分别以切削速度 40m/min、进给量 0.1mm/r 和背吃刀量 0.5mm 的切削参数下进行切削试验。本文以切削力平均值进行 研究分析,其刀具后刀面磨损加剧,X 方向进给力、Y 方向主切削力和 Z 方向切深抗力均有不同程度的增加。当 VB=0.1mm 时,X 方向的切削力较未磨损刀具增幅25.3%、Z 方向的切削力较未磨损刀具增幅 15.3%,Y 方向切削力增幅最为显著,较未磨损刀具增幅 38.5% ;当VB=0.2mm 时,X 方向的切削力较 VB=0.1mm 时增幅21.7%、Z 方向的切削力较 VB=0.1mm 时增幅 29.4%,Y方向切削力较 VB=0.1mm 时增幅 45.9%;当 VB=0.3mm时,X 方向的切削力较 VB=0.2mm 时增幅 139%、Z 方向的切削力较 VB=0.2mm 时增幅 147.3%,Y 方向切削力较 VB=0.2mm 时增幅 156.9%,相对于未磨损刀具增加了 4 倍多。这主要是由于后刀面磨损量在 0~0.2mm之间时,刀具处于正常磨损阶段,故 X、Y 和 Z 方向的切削力增幅不是很大,当 VB 超过 0.2mm 时,X、Y 和 Z 方向的切削力增长趋势都很显著,这主要是由于刀具磨损量增加到一定限度时,刀具达到了急剧磨损阶段,切削力急剧增高,刀具磨损速度加快。
图 9 为不同后刀面磨损量下切削力的试验与仿真对比图,其中刀具后刀面磨损量 VB=0 时,X、Y 和 Z方向的仿真铣削力误差范围在 6%~8% 之间,精度较高;当后刀面磨损量 VB=0.1mm 时,X、Y 和 Z 方向的仿真铣削力误差范围在 10%~13% 之间,精度较好;当后刀面磨损量 VB=0.2mm 时,X、Y 和 Z 方向的仿真铣削力误差范围在 6%~20% 之间,精度一般;当后刀面磨损量 VB=0.3mm 时,X、Y 和 Z 方向的仿真铣削力误差范围在 15%~25.6% 之间,误差达到最大。随着后刀面磨损量的增加,误差随着增大,其原因一是可以归结于有限元模型建立时相应边界条件的简化;二是由于 GH4169 材料的本构关系模型是通过试验数据拟合而来,具有一定偏差,导致仿真结果与试验数值产生了一定误差。虽然仿真值与试验值有一定误差,然而从整体趋势上看,仿真与试验较为一致。所以建立的有限元仿真模型是符合实际的,对实际加工具有一定的指导意义。仿真与试验结果均表明后刀面磨损量超过0.2mm 时的切削力明显增大,刀具处于急剧磨损阶段,因此在镍基高温合金 GH4169 车削精加工过程中,硬质合金刀具最优加工时间应选择在后刀面磨损量达到0.2mm 之前。

4 结论

本文利用有限元技术和试验相结合的方法,对镍基高温合金 GH4169 的切削过程进行了研究,分析了不同后刀面磨损量下的切削力及切削温度变化规律,得到了如下结论:

(1)随着后刀面磨损量的增加,切削力及切削温度逐渐增加。当 VB > 0.2mm 时,切削力急剧增长,刀具达到了急剧磨损阶段。

(2)镍基高温合金 GH4169 车削精加工过程中,硬质合金刀具的磨钝标准 VB 建议为 0.2mm。

#轴承#《你知道轴承也会失效吗?》

一、轴承的失效机理
1.接触疲劳失效
接触疲劳失效系指轴承工作表面受到交变应力的作用而产生失效。接触疲劳剥落发生在轴承工作表面,往往也伴随着疲劳裂纹,首先从接触表面以下最大交变切应力处产生,然后扩展到表面形成不同的剥落形状,如点状为点蚀或麻点剥落,剥落成小片状的称浅层剥落。由于剥落面的逐渐扩大,而往往向深层扩展,形成深层剥落。深层剥落是接触疲劳失效的疲劳源。
2.磨损失效
磨损失效系指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。持续的磨损将引起轴承零件逐渐损坏,并最终导致轴承尺寸精度丧失及其它相关问题。磨损可能影响到形状变化,配合间隙增大及工作表面形貌变化,可能影响到润滑剂或使其污染达到一定程度而造成润滑功能完全丧失,因而使轴承丧失旋转精度乃至不能正常运转。磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为最常见的磨粒磨损和粘着磨损。
磨粒磨损系指轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。硬质粒子或异物可能来自主机内部或来自主机系统其它相邻零件由润滑介质送进轴承内部。粘着磨损系指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。这种粘着——撕裂——粘着的循环过程构成了粘着磨损,一般而言,轻微的粘着磨损称为擦伤,严重的粘着磨损称为咬合。
3.断裂失效
轴承断裂失效主要原因是缺陷与过载两大因素。当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。过载原因主要是主机突发故障或安装不当。轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在,今后仍必须加强控制。但一般来说,通常出现的轴承断裂失效大多数为过载失效。
4.游隙变化失效
轴承在工作中,由于外界或内在因素的影响,使原有配合间隙改变,精度降低,乃至造成“咬死”称为游隙变化失效。外界因素如过盈量过大,安装不到位,温升引起的膨胀量、瞬时过载等,内在因素如残余奥氏体和残余应力处于不稳定状态等均是造成游隙变化失效的主要原因。
轴承失效分析方法
在分析轴承失效的过程中,往往会碰到许多错综复杂的现象,各种实验结果可能是相互矛盾或者主次不清,这就需要经过反复实验、论证,以获得足够的证据或反证。只有运用正确的分析方法、程序、步骤,才能找到引发失效的真正原因。
一般情况下轴承失效分析大体可分为以下三个步骤:失效实物和背景资料的收集、对失效实物的宏观检查和微观分析。
1.失效实物和背景材料的收集
尽可能地收集到失效事物的各个零件和残片。充分了解失效轴承的工作条件、使用过程和制造质量等。具体内容包括:
(1)主机的载荷、转速、工作状况等轴承的设计工作条件。
(2)轴承及其相关部位其他零件的失效情况,轴承失效的类型。
(3)轴承的安装运转记录。运转使用过程中有无不正常操作。
(4)轴承工作中所承受的实际载荷是否符合原设计。
(5)轴承工作的实际转速及不同转速出现的频率。
(6)失效时是否有温度的急剧增加或冒烟,是否有噪声及振动。
(7)工作环境中有无腐蚀性介质,轴承与轴颈间有无特殊的表面氧化色或其他沾污色。
(8)轴承的安装记录(包括安装前轴承尺寸公差的复验情况),轴承原始间隙、装配和对中情况,轴承座和机座刚性如何,安装是否有异常。
(9)轴承运转是否有热膨胀及动力传递变化。
(10)轴承的润滑情况,包括润滑剂的牌号、成分、颜色、粘度、杂质含量、过滤、更换及供给情况等,并收集其沉淀物。
(11)轴承的选材是否正确,用材质量是否符合有关标准或图样要求。
(12)轴承的制造工艺过程是否正常,表面是否有塑性变形,有没有表面磨削烧伤。
(13)失效轴承的修复和保养记录。
(14)同批或同类轴承的失效情况。
在收集实际背景材料工作中,全部满足上述要求是很难的。但收集到的资料越多,无疑会更有利于得到正确的分析结论。
2.宏观检查
对失效轴承进行宏观检查(包括尺寸公差测量和表面状态检查分析),是失效分析最重要的环节。总体的外观检查,可了解轴承失效的概貌和损坏部位的特征,估计造成失效的起因,察看缺陷的大小、形状、部位、数量和特征,并截取适当部位做进一步的的微观检查和分析。宏观检查的内容包括:
(1)外形和尺寸的变化情况(包括测振分析、动态函数分析和滚道圆度分析)。
(2)游隙的变化情况。
(3)是否有腐蚀现象,在什么部位,是什么类型的腐蚀,是否与失效直接有关。
(4)是否有裂纹,裂纹的形态和断口性质如何。
(5)磨损是什么类型的,对失效有多大作用。
(6)观察轴承各零件工作表面变色的情况和部位以确定其润滑情况和表面温度效应。
(7)对失效特征区主要观察有无异常磨损、外来颗粒嵌入、裂纹、擦伤和其他缺陷。
(8)冷酸洗法或热酸洗法检验轴承零件原始表面有无软点、脱碳层和烧伤,特别是表面磨削烧伤。
(9)用X射线应力测定仪器测量轴承工作前后的应力变化情况。
宏观检查的结果,有时可基本判断失效的形式和原因,但要进一步确定失效的性质,还必须取得更多的证据,做微观分析。
3.微观分析
失效轴承的微观分析包括光学金相分析、电子显微镜分析、探针和电子能谱分析等。主要是根据失效特征区的微观组织结构变化和对疲劳源、裂纹源的分析为失效分析提供更充分的判据或反证。微观分析中最常用、最普遍的方法是光学金相分析和对表面硬度检测。分析的内容应包括:
(1)材料质量是否符合有关标准和设计要求。
(2)轴承零件的基本组织和热处理质量是否符合有关要求。
(3)表层组织是否存在脱碳层、托氏体和其他表面加工变质层。
(4)测量渗碳层等表面强化层和多层金属各层组织的深度,腐蚀坑或裂纹的形态与深度,并根据裂纹的形状和两侧组织特征确定裂纹产生的原因及性质。
(5)根据晶粒大小、组织变形、局部相变、重结晶、相聚集等判断变形程度、温升情况、材料种类及工艺过程等。
(6)测量基本硬度、硬度均匀性及失效特征区的硬度变化。
(7)断口观察与分析。用扫描电子显微镜定性分析和测量观察断口。
(8)电子显微镜、探针和电子能谱在疲劳源和裂纹源分析中能测出断口的成分,发现断口的性质和断裂的原因。
以上介绍的轴承失效分析一般方法的三个步骤是一个由表及里逐步深入的分析过程。具体每一步骤中包含的内容应根据轴承失效的类型和特点,视具体情况取舍,但分析步骤是缺一不可的。而且在整个分析过程中,分析结果应始终与影响轴承失效的诸多因素联系起来,综合考虑。
三、轴承常见失效模式及对策
1.沟道单侧极限位置剥落
沟道单侧极限位置剥落主要表现在沟道与挡边交界处有严重的剥落环带。产生原因是轴承安装不到位或运转过程中突发轴向过载。采取对策是确保轴承安装到位或将自由侧轴承外圈配合改为间隙配合,以期轴承过载时使轴承得到补偿。
2.沟道在圆周方向呈对称位置剥落
对称位置剥落表现在内圈为周围环带剥落,而外圈呈周向对称位置剥落(即椭圆的短轴方向),其产生原因主要是因为外壳孔椭圆过大或两半分离式外壳孔结构,这在摩托车用凸轮轴轴承中表现尤为明显。当轴承压入椭圆偏大的外壳孔中或两半分离式外壳固紧时,使轴承外圈产生椭圆,在短轴方向的游隙明显减少甚至负游隙。轴承在载荷的作用下,内圈旋转产生周向剥落痕迹,外圈只在短轴方向的对称位置产生剥落痕迹。这是该轴承早期失效的主要原因,经对该轴承失效件检验表明,该轴承外径圆度已从原工艺控制的0.8μm变为27μm。此值远远大于径向游隙值。因此,可以肯定该轴承是在严重变形及负游隙下工作的,工作面上易早期形成异常的急剧磨损与剥落。采取的对策是提高外壳孔加工精度或尽可能不采用外壳孔两半分离结构。
3.滚道倾斜剥落
在轴承工作面上呈倾斜剥落环带,说明轴承是在倾斜状态下工作的,当倾斜角达到或超过临界状态时,易早期形成异常的急剧磨损与剥落。产生的原因主要是因为安装不良,轴有挠度、轴颈与外壳孔精度低等,采取对策为确保轴承安装质量与提高轴肩、孔肩的轴向跳动精度。
4.套圈断裂
套圈断裂失效一般较少见,往往是突发性过载造成。产生原因较为复杂,如轴承的原材料缺陷(气泡、缩孔)、锻造缺陷(过烧)、热处理缺陷(过热)、加工缺陷(局部烧伤或表面微裂纹)、主机缺陷(安装不良、润滑贫乏、瞬时过载)等,一旦受过载冲击负荷或剧烈振动均有可能使套圈断裂。采取对策为避免过载冲击载荷、选择适当的过盈量、提
安装精度、改善使用条件及加强轴承制造过程中的质量控制。
5.保持架断裂
保持架断裂属于偶发性非正常失效模式。其产生原因主要有以下五个方面:
a.保持架异常载荷。如安装不到位、倾斜、过盈量过大等易造成游隙减少,加剧摩擦生热,表面软化,过早出现异常剥落,随着剥落的扩展,剥落异物进入保持架兜孔中,导致保持架运转阻滞并产生附加载荷,加剧了保持架的磨损,如此恶化的循环作用,便可能造成保持架断裂。
b.润滑不良主要指轴承运转处于贫油状态,易形成粘着磨损,使工作表面状态恶化,粘着磨损产生的撕裂物易进入保持架,使保持架产生异常载荷,有可能造成保持架断裂。
c.外来异物的侵入是造成保持架断裂失效的常见模式。由于外来硬质异物的侵入,加剧了保持架的磨损与产生异常附加载荷,也有可能导致保持架断裂。
d.蠕变现象也是造成保持架断裂的原因之一。所谓蠕变多指套圈的滑动现象,在配合面过盈量不足的情况下,由于滑动而使载荷点向周围方向移动,产生套圈相对轴或外壳向圆周方向位置偏离的现象。蠕变一旦产生,配合面显着磨损,磨损粉末有可能进入轴承内部,形成异常磨损——滚道剥落——保持架磨损及附加载荷的过程,以至可能造成保持架断裂。
e.保持架材料缺陷(如裂纹、大块异金属夹杂物、缩孔、气泡)及铆合缺陷(缺钉、垫钉或两半保持架结合面空隙,严重铆伤)等均可能造成保持架断裂。采取对策为在制造过程中加以严格控制。
四、总结
综上所述,从轴承常见失效机理与失效模式可知,尽管滚动轴承是精密而可靠的机构基础体,但使用不当也会引起早期失效。一般情况下,如果能正确使用轴承,可使用至疲劳寿命为止。轴承的早期失效多起于主机配合部位的制造精度、安装质量、使用条件、润滑效果、外部异物侵入、热影响及主机突发故障等方面的因素。因此,正确合理地使用轴承是一项系统工程,在轴承结构设计、制造和装机过程中,针对产生早期失效的环节,采取相应的措施,可有效地提高轴承及主机的使用寿命,这是制造厂和客户应负有的共同责任。


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 曾经的我青春年少,为爱痴狂,可以为了自己爱的人付出所有,不求回报,爱的伤痕累累。我想我是庆幸自己的选择的,虽然谈不上有多幸福,至少我不用担惊受怕,患得患失,没有
  • 7.15早读原文: Solitude is where you find yourself so that you can reach out to other
  • 我把小出租屋擦洗的锃光瓦亮,你说依旧没有归属感,果然中国人骨子里都是有房子才有家。然后我们一起买菜、种花、读书、喝茶,你画你的画,我写我的心得,我们都喜欢这种各
  • 成长的意义不在于得到了多少,而在于遇见更好的自己。水入茶开,一杯入喉,让自己平静,慢慢去消化压力与烦恼;二杯入腹,让自己放松,不去评判过去,也不断定明天,只享受
  • 25.别人在跟你说他喜欢的东西时,希望你不要反驳,因为我们都很认真的在说,而你却说我们喜欢的东西有多么不好,你的直白,只是自私。19.麦兜说:有事情是要说出来的
  • uu急得眼泪都要掉下来了,他决定想办法去找这颗小星星,他太担心这颗小星星了。他对着无线电哥哥给他的话筒说:“天空中的月亮婆婆和小星星们你们好,我叫uu,我想请你
  • 自律是一件很重要的事情我是一个很没有主见的人 我很难对一件事痛快做出决定 我有点事我有时候会睡不着觉我妈昨天跟我说 我给你点建议 但是我不会替你做决定 因为这
  • 加上去年和前年的惊艳影视作品,日剧的新黄金时代的确是来了本剧最初以为是小众,但观后才知道这是真正的大众影视剧。近期看了一本脑洞大开的书,名为《人类简史》论述人类
  • 水何澹澹,山岛竦峙……虽然这不是“碣石山”但是莫名觉得这首诗如此贴合此情此景[心]到底是经典太经典 还是说这世上相似的心境常常有…… 东临碣石,以观沧海。#双子
  • 情理、情理。情和理本非一物。情是情分,理是本分。因为情,我可以去做一些事情。因为理,我可以不去做这些事情。 可是,这世上哪有那么多道理可以讲呢。所谓的道德绑架存
  • 现在满口的仁义道德 都是为了让大家知道真相 那当时你隐藏“真相”的时候 你又是什么心态 ———“我知道了一个不得了的东西,我比别人了解他,我比别人理解他”你只是
  • 我说,或许大家无聊时都热衷于借「顽空」作比来调笑,元无与本有倘若相对而立,无非还是于二元中囿「有无」而有无的定义始终是识域思维的一种构陷。推荐这本书的朋友说,这
  • 如果我们的内心春光明媚,人生的哪一个季节不是最好的春天呢?如果我们的内心就是一个花园,人生的哪一天不是最美的花季呢?
  • 牙疼到每晚体验被刀切割的苦痛,止疼药过敏的我幼小可怜又无助,急诊医生说∶你尽快去拔智齿吧。打麻药前医生还非让我拿镜子看一眼这颗智齿弯成了啥样,被拒后,医生还来一
  • [月亮] 卸妆的时候发现眼角竟有了轻微的细尾拿湿的卸妆棉去擦 发现不是卡粉了 是真的晚上特别纠结要不要升本 最后决定先好好学英语 再说升本不升躺在床上的时候觉得
  • 既为他的懂事而开心,又为他的不甘心而惋惜,但最终还是为他送上最美好的祝福。三伏天是一年之中扶补阳气最好的时间,而俗话说“阳气足百病除”意思是想要调理身体,三伏天
  • 雾似纱,飘天涯,柳枝梦奇葩。满卷情思细品尝,谁道我痴狂?
  • 现在好像不喜欢一个人就不能说出来了因为说出来就会被粉丝骂[疑问]或者说如果大家都在追一个剧夸它怎么怎么好看主角多么多么有魅力但是我要是说一句“我没get到”就会
  • 抵达的蒲公英,捎来你的消息。是南雁归,是北风吹,是积攒的雨落,是陈年的雪飘。
  • 朋友因为感情上的一件小事和男朋友吵翻了,本来只要一方低头说声抱歉就可以解决,可是双方各自都放不下面子,死斗气,女生也在不停的作死,拿起手机点开微信对话框就说出一