#朱一龙2021朱事皆宜# [抱一抱] #朱一龙2021爱你如一#
5.18日打铁日程~~
包包们先关注博主,再互动哦!
【转发,点赞,评论选一即可❗️点赞是原博点赞,不是对评论点赞❗️】
手里的hao都要养起来呀[绿植挖土]

哥哥的博https://t.cn/A6V47jD8继续转赞评呀~

1.中guo电影bao道
https://t.cn/A6cWS4H8
2.微bo电shi剧
https://t.cn/A6V2AmrA
3.微bo娱le
https://t.cn/A6UKqS5G
4.微bo综yi
https://t.cn/A6b4UNh3
5.新lang电shi
https://t.cn/A6V22C8S
6.新lang娱le
https://t.cn/A6GRKvO2
7.新lang综yi
https://t.cn/A6ca4Ou0

客户文献分享| IF=14.612,基于酶催化的Asp-Phe-Tyr三肽聚合反应癌症免疫疗

本期解读

题目:A Strategy Based on the Enzyme-Catalyzed Polymerization Reaction of Asp-Phe-Tyr Tripeptide for Cancer Immunotherapy
期刊:JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
影响因子:14.612/Q1
合作技术:iTRAQ定量蛋白组学

一、研究背景
释放免疫系统的力量被认为是治疗癌症的重要策略。尽管大多数癌症都表达肿瘤特异性抗原,但免疫疗法仍是保守的,反应低且不良反应频繁。一个主要原因是癌症已经获得了抑制抗原呈递的能力。约70-95%的人类癌细胞下调与抗原呈递相关的蛋白质的表达。这些蛋白质的系统性缺乏促使癌细胞逃脱免疫识别。激活免疫系统的努力主要集中在使用拮抗剂或抑制剂靶向某些蛋白质上。但是,单靶标药物的功效是有限的,而免疫疗法为癌症提供了一个有前景的治疗策略。然而,即使在高抗原负担的肿瘤中,全身抑制抗原提呈仍然极大地限制了免疫治疗的应用。在此,研究者构建了一种基于功能三肽Asp-Phe-Tyr (DFY)的肿瘤蛋白工程系统,该系统可以自动收集和传递靶向细胞的免疫肿瘤蛋白到免疫细胞中。通过酪氨酸酶催化聚合,DFY三肽选择性地聚集在酪氨酸酶高表达的黑色素瘤细胞中。然后将富含醌的中间体与肿瘤特异性蛋白通过Michael加成共价连接,形成携带肿瘤蛋白的微纤维,该微纤维可被抗原提呈细胞吞噬,并表现出肿瘤抗原特性以增强免疫效果。在抗原递呈不足的黑色素瘤细胞中,该系统可以成功地富集和运输含有肿瘤抗原的蛋白质到免疫细胞。此外,在小鼠黑色素瘤的体内研究中,DFY三肽经皮传递抑制肿瘤生长和术后复发。

二、技术路线
聚合肽筛选鉴定——聚合肽DFY作用机制解析——DFY作用下功能蛋白差异性分析——肿瘤蛋白交联pDFY的免疫激活机制解析——肿瘤模型DFY抗癌作用验证

三、实验结果
1. 酪氨酸酶催化聚合DFY。
首先,研究者筛选得到一种可被酪氨酸酶催化聚合的肽DFY(Asp-Phe-Tyr),并观察到在聚合过程中产生了不溶性黑色沉淀物,利用倒置显微镜和扫描电子显微镜(SEM)观察均表明是由DFY聚合成的微纤维(图1b和图1b)。然后,研究者研究了各种细胞系中酪氨酸酶基因(TYR)表达的差异,基于CCLE数据库(https://t.cn/Ev9rmGW)分析了TYR基因在740个细胞系中的表达水平,结果表明,与其他癌细胞分型相比,黑色素瘤细胞系表现出最高的TYR基因表达量(图1e)。此外,研究了酪氨酸酶过表达的黑色素瘤细胞中DFY的胞内聚合反应(图1f),结果表明DFY在黑素瘤细胞中的聚合是酪氨酸酶依赖性的。此外,研究者验证了DFY的聚合是否可以在体内原位诱导。将DFY和不可聚合肽(Asp-Phe-Phe,DFF)注射到小鼠癌旁组织中以观察其在肿瘤中的清除情况。如图1i所示,注射的DFY比DFF在肿瘤位置停留的时间更长,相比之下,大多数DFF在肿瘤中被快速清除了,因此推测DFY能在肿瘤组织中特异性聚合。

2. DFY的胞内蛋白捕获。
研究者通过MTT分析表明,DFY在33μM的浓度下可抑制小鼠B16细胞的增殖达57%(图2e),在与各种B16细胞抑制剂孵育后,发现单苯甲酮(酪氨酸酶抑制剂)和谷胱甘肽(GSH)均可将B16细胞从DFY聚合引起的细胞死亡过程中拯救出来(图2f)。Ac-DEVD-CHO(凋亡抑制剂),ferrostatin-1(促肥大症抑制剂),necrostatin-1(坏死性抑制剂),TBHQ和BHA(醌氧化还原酶诱导剂)却无法挽救DFY对细胞的伤害。得出的结论是,单苯甲酮和谷胱甘肽的解毒作用归因于GSH和DFY之间的迈克尔加成。通过荧光显微镜观察,发现长期培养后,微纤维从细胞中释放出来(图4Sd,e)。实验证明DFY收集靶细胞的胞内蛋白,并以类似于坏死的方式将它们转运出细胞,并伴随DFY聚合诱导的细胞死亡。因此,由pDFY携带的肿瘤蛋白的释放可能刺激随后的抗原触发的免疫反应。

3. 交联蛋白的蛋白质组学研究。
由于蛋白质的免疫原性因蛋白质而异,研究者研究了通过抗原工程系统收集的蛋白质类型,与金开瑞合作的串联质谱用于定量分析蛋白质含量。如图3a,b和S5所示,在DFY聚合后,确定了190个上调蛋白和346个下调蛋白(倍数变化1.5和P <0.05,超几何测试)。然后通过GO数据库富集分析了这些差异蛋白的功能。结果表明,这些蛋白质大多数与细胞代谢(氨基酸代谢,糖代谢),能量供应(糖酵解,有氧呼吸)和蛋白质合成(核糖体)相关(图3c)。发现这些蛋白质在功能上涵盖了细胞最重要的生物学功能(图3d)。差异蛋白主要来自核糖体,线粒体,细胞核和高尔基体。此外,通过STRING功能蛋白缔合网络研究了DFY聚合后减少的蛋白质之间的相互作用(图3e)。来自细胞器的蛋白质,特别是核糖体,线粒体和细胞核中的蛋白质,形成紧密的簇。该结果表明DFY可以特异性地交联来自这些细胞器的蛋白质,从而导致这些蛋白质的显着减少。另外,作为专业的产生黑色素的细胞器,还分析了在DFY处理的黑色素瘤细胞中黑色素体的蛋白质表达(图S5)。GO富集分析的结果表明,用DFY处理后,黑素体中的大多数相关蛋白也被下调。使用主成分分析(PCA)分析了Cys含量,理论等电点和差异蛋白质脂肪族指数三个指标(图3f),该结果表明被下调的蛋白质可以被DFY结构结合或化学交联。从实验上观察到,DFY处理可抑制线粒体功能,抑制蛋白质合成并损害细胞骨架形成(图S6)。这些实验结果与理论推测吻合良好。

4. 肿瘤蛋白交联pDFY的免疫激活。
为了研究B16细胞释放的纤维是否可以被APC吞噬,通过共聚焦荧光显微镜和流式细胞术检查了B16和APC(RAW264.7和DC)对DFY或pDFY的摄取(图4a,b)。荧光成像表明DFY在各种细胞中积累,但pDFY倾向于被APC吞噬。该观察证明,纤维携带的抗原蛋白更倾向于递送至APC。为了阐明pDFY携带的肿瘤蛋白是否能增强免疫反应,用流式细胞仪进一步分析了裂解物蛋白交联的pDFY在DCs成熟中的能力(图4c)。与裂解物组相比,裂解物+ pDFY在DC的成熟度上增加了2.3倍。此外,与裂解物+ pDFY相比,裂解物@pDFY诱导的DC成熟也更为显着(P = 0.0002)。然后将B16蛋白交联的经pDFY处理的B16细胞和脾细胞以1:10的比例共孵育,以研究智能抗原工程系统引发针对癌细胞的特异性免疫反应的能力(图4d),研究发现经裂解物@pDFY处理的脾细胞消除了59.3%的B16细胞。相反,裂解物或裂解物+ pDFY处理的脾细胞的混合物仅杀死了不到30%的B16细胞。携带肿瘤抗原蛋白的裂解物@ pDFY成功触发了针对B16细胞的特异性免疫杀伤。在此基础上,考虑到pDFY的佐剂作用和交联蛋白的强免疫原性,抗原工程系统可作为黑色素瘤治疗的免疫增强疫苗型材料。最后,经B16荷瘤小鼠皮下药物注射研究,证明了由于某些功能蛋白被裂解物@ pDFY富集,裂解物@ pDFY可以成功激活体内抗癌免疫反应。

5. DFY在不可切除黑色素瘤中的抗癌作用。
随后,研究者对抗原工程系统的肿瘤抑制能力进行了分析。抗PD1抗体(aPD1)或化学治疗药物已与基于DFY的抗原工程系统结合用于治疗B16荷瘤小鼠(图5a)实验结果表明DFY + aPD1的治疗抑制了91%的肿瘤生长。研究者还记录了各种治疗后小鼠的存活率(图5c)。在所有组中,用DFY + aPD1处理的小鼠的存活时间最长。该结果表明,肿瘤周围注射DFY不仅可以收集可能含有肿瘤抗原的肿瘤蛋白,而且可以将免疫原性肿瘤蛋白递送至APC并引起随后的CTL激活以抑制肿瘤进展。酶联免疫吸附试验(ELISA)显示,DFY + aPD1处理后,包括干扰素γ(IFN-γ)和肿瘤坏死因子α(TNF-α)在内的免疫激活标记物增加(图5f)。

6. DFY经皮给药治疗黑色素瘤。
研究者将凝胶状的DFY @ gel作为一种透皮治疗系统,粘附在皮肤上时释放DFY。如图6g所示,在相同深度下,用DFY @ gel治疗的肿瘤的平均荧光强度(MFI)高于DFY。使用V-C扩散池和荧光光谱仪研究了分离的猪皮中DFY @ gel的透皮吸收。与游离DFY相比,DFY @ gel的透皮渗透提高了1.5倍(图6h)。然后通过测量肿瘤体积评估DFY @ gel抑制肿瘤生长的能力(图6i)。在为期16天的实验中,DFY @ gel显示出与DFY(腹膜内注射)相似的治疗效果。IFN-α在临床上用于术后黑色素瘤的治疗。与临床方案相比,评估了DFY @ gel的治疗效果。IFN-α和经皮凝胶治疗均显着抑制了肿瘤的复发。该结果表明透皮DFY @ gel在预防黑素瘤复发方面具有与临床上使用的IFN-α几乎相同的治疗效果。

四、小结
在这项研究中,研究者设计了一种基于肽的肿瘤蛋白工程系统,该系统对黑素瘤治疗表现出强大的免疫原性。一旦进入恶性黑色素瘤细胞,该三肽进行酪氨酸酶催化的氧化聚合。同时,通过迈克尔加成反应还捕获了来自细胞核,线粒体和核糖体的高免疫原性功能蛋白,这引起了类似于坏死的快速细胞死亡。随后,肿瘤蛋白交联的pDFY从垂死和破裂的癌细胞中释放出来,形成的聚集纤维更易于被APC内吞。因此,设计的肿瘤蛋白质工程系统成功地收集了免疫原性蛋白质并将其递送至APC,并表现出辅助作用以增强免疫应答以消除肿瘤。DFY的经皮免疫疗法在小鼠和小型猪模型中也显示出高效率和高生物相容性,并显着延长了肿瘤小鼠的存活时间。在可切除的黑色素瘤中,发现DFY@gel具有与临床IFN-α治疗相似的复发预防效果。

了解金开瑞iTRAQ定量蛋白质组学技术:https://t.cn/A6V4xP7Y

集微网报道,“软件定义汽车趋势之下,如今的智能电动汽车需要强大的计算能力并提供更多感知等方面的功能,传统的汽车架构的更新换代已经迫在眉睫。”在近日的安波福(前身为“德尔福”)2021上海车展的媒体交流会上,安波福亚太区总裁杨晓明对此指出。

而十多年前,正是安波福公司的前身德尔福率先提出了汽车架构的概念EEA,即电子电气架构。但随着汽车内的电子元器件越来越多,汽车电子系统的复杂度随之逐步累进,造成整个电子电气构架松散,各单元、模块由线束链接,即分布式构架。

如今在汽车迈向智能化、电气化、网联化的进程中,传统分布式的汽车架构也近乎接近其架构极限,面对未来的无人驾驶、车联网等需求将力不从心。在从“功能机”向“智能机”升级之路上,汽车电子电气的更新换代成为需要突破的关键因素。

传统汽车分布式架构沦为沉重的“负担”

为何更换?根本原因是汽车产品这一属性在不断改变。汽车电子电气架构是随着汽车从机械式的硬件产品向机电一体、软硬结合产品的转变而演变。

其实,20 世纪50 年代的汽车几乎没有电子设备,以1957年的雪佛兰Bel Air为例,其内部结构十分简约几乎没有电子元件。

汽车上最早出现的电子控制单元(ECU)的作用仅仅在于实现对发动机功能的控制,车辆各功能由不同的单一ECU控制,这就是最初的分布式架构。

20世纪90年代开始,为了丰富汽车的电子功能,整车厂曾大张旗鼓地往车上搭载各种ECU元件。据悉,从1993年到2010年,奥迪A8车型上使用的ECU数量从5个骤增至上百个。

但ECU数量不断增加,也成为各大整车厂一大沉重的负担:不同ECU来自不同供应商,车厂后期维护升级困难且繁琐;同时,各ECU都是独立的通信渠道,电源和数据分配的布线方案难度增加;此外,各个ECU的运算能力不一,都需要自己的冗余设计,这大幅提高了车厂的成本。

这些缺陷是传统分布式电子电气架构无法解决的问题,整车厂不能坐以待毙了,亟需一个全新的电子电气架构来寻求突破。

区域控制器“化繁为简”

在这场变革中,传统的ECU供应商可能最先感受到时代气息的骤变。德尔福(先安波福)、博世等引入了“功能域”的概念,来统一搭建整车电子电气架构,这也意味着逐渐向集中式电子电器架构演变。顾名思义,功能域就是按照功能来进行划分,即所谓的车身与便利系统、娱乐系统、底盘与安全系统、动力系统以及辅助驾驶系统。

博世的电子电气架构技术战略图

在这个过程中,区域控制器( DCU)不可或缺。

如果说分布式电子电气架构是ECU增多,那么DCU就是给ECU“减负”,化繁为简。

在车辆中,区域控制器作为节点,可以协调域下的各个ECU,同时担负域内主要的运算职责,这样就可以大大降低每个ECU需要担负的运算能力,也就是在一定程度上打通了分布式架构中每个ECU各自为政的“孤岛”局面,可以支持更多智能的、复杂的功能。

DCU看似功能简单,但其对简化汽车架构,进一步提升汽车性能却是至关重要的一步,以2017年奥迪A8 投产时搭载的全球首个L3自动驾驶域控制器zFAS为例。

奥迪将奥迪A8所有驾驶辅助系统相互分离的ECU全部放弃,转而将相关数据全部集中到中央驾驶辅助控制单元(zFAS)。zFAS集成了四大厉害的功能,其中,平台处理器是英伟达 Tegra K1,用于360°视觉数据的融合处理,对于监视员的状态进行监控;Mobileye的EyeQ3负责图像处理,特别是前视处理的部分;Altera Cyclone用于感知数据的融合处理,和处理超声波传感器,通过这个芯片实现内部的通信;英飞凌Aurix Tricore用于整个模块的运行安全操作,协调整体的工作,对外进行通信。

zFAS在当时代表了传统车企前沿甚至最高的水平,并开启了行业的变革,驱动行业进入集成式的电子电气架构时代。

特斯拉加快迭变速度

特斯拉更是以全方位的创新,加快了汽车行业电子电气架构的迭代速度。特斯拉采取了集中式的电子电气架构,通过自主研发底层操作系统,并使用中央处理器对不同的域处理器和ECU进行统一管理。这种架构与智能手机和PC非常相似。

特斯拉Model 3的电子电气架构只有三大域:中央计算模块(CCM)、左车身控制模块(BCM LH)和 右车身控制模块(BCM RH)。其中CCM将IVI(信息娱乐系统)、ADAS/Autopilot(辅助驾驶系统)和车内外通信3部分整合为一体,CCM 上运行着X86 Linux 系统。BCM LH 和 BCM RH 则负责车身与便利系统、底盘与安全系统以及动力系统的功能。

当然,特斯拉一直特立独行,在集中式架构路上也属于遥遥领先。

那么,行业玩家普遍处在什么水平呢?

大众的MEB平台做了三大控制器:车辆控制域(ICAS1)、智能驾驶域(ICAS2)和智能座舱域(ICAS3),但车辆的分布式模块还比较多。而更加传统的车企的电子电气架构集成度更低一些,进化也缓慢一些,分为自动驾驶域、动力域、底盘域、座舱域和车身域五大域。

国内车企都在朝着集中式的电子电气架构演化。例如,2019年,通用汽车推出了新一代电子电气架构Global B;2020年,随着小鹏 P7量产,其与英伟达、德赛西威三方合作开发的自动驾驶域控制器IPU 03也已投入量产;奇瑞、领克也发布了各种的域集中式架构;理想汽车也表示,将在2022年推出搭载基于英伟达Orin芯片的自动驾驶域控制器。

座舱域控制器快速落地

零部件供应商也在这股潮流中积极转型,很多聚焦于智能座舱域控制器,这也是目前量产较为成熟的领域。传统座舱域是由多个分布式的电子控制单元(ECU)组成,也难以并支持多屏互动、多模交互等复杂座舱功能,也由此催生出座舱域控制器这一集中式的计算平台。

业界首款可量产座舱域控制器,要追溯至伟世通在2016年亮相发布的SmartCoreTM平台。2019年,广汽Aion LX的上市意味着伟世通集成3个座舱域的SmartCoreTM域控制器正式量产。SmartCoreTM使用了高通全新的骁龙芯片,满足了新一代座舱电子系统所需的强大的算力和AI能力,并基于强大的CPU和GPU,可支持多达6~8个显示屏,助力智能语音交互,增强现实和图像处理,为实现智能电子座舱提供了硬件平台支持。

去年,佛吉亚搭载在红旗H9,以及哈曼搭载于北汽ARCFOX αT的座舱域控制器也完成量产上市。佛吉亚为红旗H9打造了集成多个系统、基于虚拟化方案的座舱域控制器,通过一体化的车载信息娱乐系统,驱动仪表组、中控等前排系统,同时实现前排与后排系统间的信息交互与融合,还依托特别研发的一套算法,座舱域控制器能够协调多个不同的系统,无缝整合一系列座舱服务和功能,同时大大降低了座舱控制的复杂程度。

大势所趋,自主零部件供应商也投身于研发大潮中,如德赛西威、华为、华阳等都推出了自己的智能座舱域控制器。未来的方向聚焦于开发具备更高性能、更高集成度和扩展性的座舱域控制器,甚至是算力要求更多的自动驾驶域控制器,以更好地满足整车厂的多样化开发需求。

重塑汽车供应链体系

展望未来,智能网联、自动驾驶要求更高的算力和更多传感器件,算力也会向中央集中,向云端集中,汽车电子电气架构的演进也正朝着集成式,甚至服务器式这一方向前行。

同样,电子电气架构在未来面临的颠覆性趋势不可小觑,这些趋势将重塑汽车供应链。可以看出,电子电气架构升级的核心技术涉及芯片/计算平台、操作系统、软件架构、以太网、5G、云计算等。而且,这些核心技术对于汽车变得愈发重要,其地位不亚于甚至有望超越发动机、变速器、底盘传统三大件,新技术公司的入局使供应链的边界逐渐模糊,汽车产业原有的核心竞争要素也发生本质变化。

就传统的汽车供应链而言,整车厂在整条供应链主要负责汽车研发制造、结构集成,当然这是以往最为重要的环节。而现在智能电动汽车的核心元素发生了极大转变,新的三大核心竞争要素为硬件、软件和服务。未来,软件将定义汽车的价值和体验,软件能力成为车企打造差异化竞争和用户体验的关键。

其实,“软件定义汽车”已经成为当下产业链头部企业的战略共识,大众、丰田、上汽等整车企业都在自建或强化软件开发体系,博世、麦格纳、大陆、采埃孚等零部件巨头也在积极加码。那么,在这一趋势之下,原有的整零关系将有何变化?

德勤表示,诸多战略性举措可能就此催生:车企可以组建行业联盟来实现车辆架构标准化,IT巨头可以引入车载云平台,出行方案供应商可以开发开源车辆堆栈和软件功能,车企也可引入更加先进的互联车辆和自动驾驶车辆。

而供应商领域,未来拥有某一项或多项核心技术优势的玩家,将在此次大变革中引领智能汽车领域,并构建庞大的生态体系,正如我们看到的今天的华为,作为汽车行业的供应商,后来居上,而且并正在打破行业规则。

至于未来汽车行业的发展、技术的发展与融合实际上是整个市场、生态演变与选择的结果,究竟会向哪个模式发展,时间会给我们答案。

原创 Sharon 天天智驾


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 本次研讨会对学校今后教学工作深入开展起到了积极推动作用,老师们表示,将统一思想,明确目标,坚持以教学为中心,走好智育提质路!为了认真落实“双减”政策,提升课堂教
  • ” 这个世上没有一条道路是可以直达终点的,永远保持思维灵活,在该换道的时候转换方向,以不变应万变,总能绝处逢生。当我们的能力没有达到工作要求的游刃有余时,我们只
  • #保险杠急救中心[超话]#5.25 互动贴 限本超 带自证 回自证❤️没有事情过不去 天塌了还有爱在❤️ 只有过不去的情绪才会把你紧紧地绑起来 太阳下山了
  • 美好的寓意,重拾勇气,期待飞天的完美蜕变(才不是什么致敬泡面女士呢[二哈])人生苦短,以淡淡的心情行走,才能快乐无限,才能让内心绵长深远,才能在平淡的生活中,找
  • #阴阳师手游[超话]# 【蛇魔阵容推荐】这套打满1500w还剩个25s左右挂满伤害2500w浮动式神&御魂配置:丑女 狂骨荒骷髅速命X 超星 一速不见岳
  • 因为是实地取景,画面感很强,有种看电影既视感,每个演员演技还可以,至少我是看进去了, 还经常因为一些可爱的小表情点拖回去看, 喜欢这样的江湖 有美好有残酷 目前
  • ”此外,为证明自己的行为正当,菲顿还称有些碎片“还没有自己指甲盖大”但伊拉克法院首席法官贾比尔回应道,“大小是无关紧要的”。据报道,菲顿称这12件古陶器碎片是在
  • 男人绝情起来就是可以到这种不可理喻的地步第二点,我们就要说到男女的思维差异了,在谈恋爱的时候,女生会喜欢作,会喜欢闹,这一定程度上是安全感在作祟,而另外一个程度
  • 丛林猫的那篇文献看起来像是在描述一只亚洲野猫(当然亚洲野猫也没有算上内蒙的分布)其二是宝贝科的分类系统,Lynina属被算作了Cypraea属下,且成为了异名。
  • 我个人的见解是:如果本身是注射层次不深的,比如稍微浅表一些的美白水光、保湿水光,那么这台仪器是可以跟水光针仪器一样的效果的。#整形安全[超话]#富贵包、肩周、后
  • ”14.“收余恨免娇嗔且自新改性情休恋逝水苦海回身早悟兰因”15.“如果好好说话不听那就掐着脖子亲”16.“一没病二没灾小小日子悠哉悠哉”17.“虽然和朋友已经
  • 当代大家,如今已经不觉得道理可贵了,当然自有其理由,其中的对与错,好与坏,十分复杂,但是现在多数人,还远远没有到达那种境界,根本没资格人人有理,因为底子太差,所
  • 无极之境,需要不断的奉献和精纯的修为,不能容忍丝毫的罪恶和不诚,而进入这样的境界,是我灵魂和生命的意义。然身心不违于圣,道心不背于神,修心不逆于本,这是我证道的
  • 有自称小区居民人士表示,虐杀猫咪的是复旦大学教授许某某。华商研究中心下属文化创意委员会,系一临时机构,已在多年前撤销。
  • ­  最忌贼友与昵友,大祸临头各自奔,  诤友知已从来少,人生百岁逢几人。《惜时歌》­  人生短短如电光,虚度光阴使人伤,  但凡成才之伟器,莫不单日当一双。
  • @知景霜林晚 ✨The Star River is boiling hot. You are the ideal of the world(鸣谢我老婆知晚@花落
  • #常观世音微语录[超话]# 常老师,假若从来不做善事,也没有施舍的心,只将干活所得的储蓄起来,这样会有果报么?#常观世音微语录[超话]# 伯母突然行走不了,这不
  • 家是人在世界的角落,庇护白日梦,也保护做梦者。】家是人在世界的角落,庇护白日梦,也保护做梦者。
  • 很有意境的小短句 1.平安喜乐,得偿所愿。 2.生而自由,爱而无畏。 3.花花世界,静守己心。 4.万事顺遂,毫无蹉跎。 5.凛冬离去,雪融草青。 6.天真灿烂
  • ps:今天和我家小邻居一起吃吃喝喝,享受昨天刚收到的热乎的房租[嘻嘻]有一直在追《游戏人生》小说的网友爆料,在小说的最新一卷的剧情里,空和白终于坦诚面对了自己的