【深夜长文 #诺贝尔物理学奖为什么颁给他们# 】#2021诺贝尔物理学奖揭晓#,获奖研究直观告诉我们:人类真的正让地球变暖!我们不能再说自己对气候变化一无所知了,因为这些气候模型的结果是非常明确的。地球正在变暖吗?是的!地球变暖是大气中温室气体含量增加导致的吗?是的!这一切能仅仅用自然因素来解释吗?不能!人类活动所排放的气体是气温升高的原因吗?是的!

  温室效应对生命至关重要

  200年前,法国物理学家约瑟夫·傅里叶对太阳向地表发出的辐射、以及从地表向外发出的辐射之间的能量平衡展开了研究,弄清了地球大气在这一平衡中扮演的角色:在地球表面,地球接收的太阳辐射会转化为向外发出的辐射,这些辐射会被大气吸收从而对大气起到加温作用。大气发挥的这种保护作用如今被称作“温室效应”。太阳的热量可以透过大气到达地表,但会被困在大气层内部。不过大气中的辐射过程还远比这复杂得多。

  科学家的任务与傅里叶当年差不多——弄清向地球发出的短波太阳辐射与地球向外发出的长波红外辐射之间的平衡关系。在接下来200年间,多名气候科学家纷纷贡献了更多的细节信息。当代气候模型更是为科学家提供了极为强大的工具,不仅帮助我们进一步理解了地球的气候,还让我们得以了解由人类导致的全球变暖。

  这些模型都是建立在物理定律的基础上的,由天气预测模型发展而来。天气通过温度、降水、风或云等气象物理量描述,受海洋和陆地活动影响。气候模型则建立在通过计算得出的天气统计特征基础之上,如平均值、标准差、最高与最低值等等。这些模型虽无法准确告诉我们明年12月10日斯德哥尔摩的天气如何,但可以让我们对斯德哥尔摩在12月的气温和降水情况获得一定了解。

  确定二氧化碳的作用

  温室效应对地球上的生命至关重要。它控制温度,因为大气中的温室气体——二氧化碳、甲烷、水蒸气和其他气体——会首先吸收地球的红外辐射,然后释放该吸收的能量,加热周围和下方的空气。

  温室气体实际上只占地球干燥大气的一小部分。地球的干燥大气中99%为氮气和氧气,二氧化碳其实仅占0.04%。最强大的温室气体是水蒸气,但我们无法控制大气中水蒸气的浓度,而二氧化碳的浓度则是可以控制的。

  大气中的水蒸气含量高度依赖于温度,进而形成反馈机制。大气中的二氧化碳越多,温度越高,空气中的水蒸气含量也就越高,从而增加温室效应,导致温度进一步升高。如果二氧化碳含量水平下降,部分水蒸气会凝结,温度也随之下降。

  关于二氧化碳影响的一块重要拼图来自瑞典的研究人员和诺贝尔奖获得者Svante Arrhenius。顺便提一下,他的同事、气象学家Nils Ekholm,在1901年,率先使用温室这个词来描述大气的热量储存和再辐射。

  Arrhenius通过十九世纪末的温室效应弄清楚了该现象背后的物理学原理——向外辐射与辐射体的绝对温度(T)的四次方(T⁴)成正比。辐射源越热,射线的波长越短。太阳的表面温度为6000°C,主要发射可见光谱中的射线。地球表面温度仅为15°C,会再次辐射我们看不见的红外辐射。如果大气不吸收这种辐射,地表温度几乎不会超过–18°C。

  Arrhenius实际上是想找出导致最近发现的冰河时代现象的背后原因。他得出的结论是,如果大气中的二氧化碳水平减半,这足以让地球进入一个新的冰河时代。反之亦然——二氧化碳量增加一倍,会使地球温度升高5-6°C,这个结果在某种程度上与目前的估计值惊人地接近。

  开创性的二氧化碳效应模型

  20世纪50年代,日本大气物理学家Syukuro Manabe和东京大学其他一些年轻而有才华的研究人员一样,选择离开被战争摧毁的日本,前往美国继续其职业生涯。他的研究目的和70年前的瑞典科学家斯万特·阿伦尼乌斯一样,都是为了理解二氧化碳水平的增加如何导致气温的上升。不过,彼时的阿伦尼乌斯专注于辐射平衡,Manabe则在20世纪60年代领导了相关物理模型的发展,将对流造成的气团垂直输送以及水蒸气的潜热纳入其中。

  为了使这些计算易于进行,Manabe选择将模型缩减为一维,即一个垂直的圆柱体,进入大气层40公里。即便如此,通过改变大气中的气体浓度来测试模型还是花费了数百小时的宝贵计算时间。氧和氮对地表温度的影响可以忽略不计,而二氧化碳的影响非常明显:当二氧化碳水平翻倍时,全球温度上升超过2摄氏度。

  该模型证实,这种升温确实是由二氧化碳浓度增加导致的;它预测了靠近地面的温度上升,而上层大气的温度变低。如果太阳辐射的变化是温度升高的原因,那么整个大气应该在同一时间被加热。

  60年前,计算机的速度比现在慢了几十万倍,因此这个模型相对简单,但Manabe掌握了正确的关键特征。他指出,模型必须一直简化,你无法与自然界的复杂性竞争——每一滴雨都涉及到如此多的物理因素,因此不可能完全计算出一切。在一维模型的基础上,Manabe在1975年发表了一个三维气候模型,这是揭开气候系统奥秘道路上的又一个里程碑。

  混乱的天气

  在Manabe之后大约十年,Klaus Hasselmann通过找到一种方法来战胜快速而混乱的天气变化(这些变化对计算而言极其麻烦),成功地将天气和气候联系在一起。我们地球的天气发生巨大变化,是因为太阳辐射在地理上和时间上的分布十分地不均匀。地球是圆的,所以到达高纬度地区的太阳光比到达赤道附近低纬度地区的太阳光要少。不仅如此,地球的地轴也是倾斜的,从而在入射辐射中产生季节性差异。暖空气和冷空气之间的密度差异导致了不同纬度之间、海洋和陆地之间、高低气团之间的巨大热量传输,从而形成了我们地球上的天气。

  众所周知,对未来十天以上的天气做出可靠的预测是一大挑战。二百年前,法国著名科学家皮埃尔-西蒙·德·拉普拉斯曾说,如果我们知道宇宙中所有粒子的位置和速度,就应该可以计算出在我们世界中发生了什么和将要发生的事情。原则上,应该是这样;牛顿三个世纪以来的运动定律(也描述了大气中的空气传输)是完全确定的——不受偶然的支配。

  然而,就天气而言,就完全是另一回事了。部分原因在于,在实践中,我们不可能做到足够精确——说明大气中每个点的气温、压力、湿度或风况。此外,方程是非线性的;初始值的微小偏差可以让天气系统以完全不同的方式演变。基于蝴蝶在巴西扇动翅膀是否会在德克萨斯州引起龙卷风这个问题,这种现象被命名为蝴蝶效应。在实践中,这意味着不可能给出长期的天气预报,也就是说天气十分混乱;这是在上世纪六十年代由美国气象学家Edward Lorenz发现的,他为今天的混沌理论奠定了基础。

  理解嘈杂数据

  尽管天气是一个典型的混乱系统,但我们如何才能建立能够预测未来数十年、甚至数百年的可靠气候模型呢?1980年前后,Klaus Hasselmann提出了如何将不断变化的混沌天气现象描述为快速变化的噪音,从而为进行长期气候预测奠定了坚实的科学基础。此外,他还提出了一些确定人类对全球温度造成的影响的方法。

  上世纪50年代,Klaus Hasselmann在德国汉堡攻读物理学博士,专攻流体力学,随后开始建立海浪和洋流的观测与理论模型。后来他迁居至美国加州,继续开展海洋学研究,并且认识了查尔斯·大卫·基林等同事。基林从1958年开始在夏威夷的莫纳罗亚天文台持续测量大气中的二氧化碳含量。Klaus Hasselmann当时还不知道,自己在日后的工作中会频繁用到体现二氧化碳水平变化的“基林曲线”。

  从充满噪声的天气数据中建立气候模型就像遛狗一样:狗有时会挣脱牵引绳,有时会跑在你前面、或者跑在你后面,有时会与你并肩前行,有时则会绕着你的腿跑。你能从狗的运动轨迹中看出你是在走路还是站立不动吗?或者能看出你是在快步行走还是小步慢走吗?狗的运动轨迹就像天气变化,你的行进轨迹就像通过计算得出的气候。我们能否用这些混乱的、充满噪声的天气数据,总结出气候的长期趋势呢?

  还有一大难点在于,影响气候的波动情况极易发生变化,这些变化可能很快,比如风的强度或空气温度;也可能很慢,比如冰盖融化和海洋温度升高。例如,海洋整体温度需一千年才能上升一度,但大气只需几周即可。关键在于,要将快速的天气变化作为噪声整合进对气候的计算中,并体现出这些噪声对气候的影响。

  Klaus Hasselmann创造了一套随机气候模型,将这些变化的可能性都整合进了模型中。其灵感来自爱因斯坦的布朗运动理论。他利用该理论说明,大气的快速变化其实可以导致海洋的缓慢变化。

  识别人类影响的痕迹

  在完成气候变化模型之后,Hasselmann又开发了识别人类对气候系统影响的方法。他发现,这些模型,连同观测结果和理论结果,都包含了关于噪声和信号特性的充分信息。例如,太阳辐射、火山颗粒或温室气体水平的变化都会留下独特的信号,即“指纹”,而且这些信号可以被分离出来。这种识别指纹的方法也可以应用于人类对气候系统的影响。Hasselman因此为进一步的气候变化研究铺平了道路。通过大量的独立观测,这些研究展示了人类对气候影响的大量痕迹。

  随着气候系统中复杂相互作用的过程被更彻底地绘制出来,尤其是有了卫星测量和天气观测的帮助,气候模型变得越来越完善。这些模型清楚地显示出温室效应正在加速:自19世纪中期以来,大气中的二氧化碳含量增加了40%。地球的大气已经有几十万年没有如此多的二氧化碳了。相应地,温度测量显示,在过去150年里,地球温度上升了1摄氏度。

  Syukuro Manabe和Klaus Hasselmann为人类作出了巨大贡献,为我们了解地球气候提供了坚实的物质基础,这也正体现了阿尔弗雷德·诺贝尔的精神。

  针对无序系统的方法

  1980年左右,Giorgio Parisi展示了他的发现,即随机现象显然受隐藏规则支配。他的工作如今被认为是对复杂系统理论最重要的贡献之一。

  复杂系统的现代研究基于十九世纪下半叶由James C。 Maxwell、Ludwig Boltzmann和J。 Willard Gibbs提出的统计力学,他们在1884年将这一领域命名为“统计力学”。统计力学从下面这一见解发展而来,即需要一种新的方法来描述由大量粒子组成的系统,例如气体或液体。这种方法必须考虑到粒子的随机运动,所以其基本思想是计算粒子的平均效应,而不是单独研究每个粒子。例如,气体中的温度是气体粒子能量平均值的量度。统计力学取得了巨大的成功,因为它为气体和液体的宏观特性(如温度和压力)提供了微观解释。

  理解物理系统的复杂性

  这些压缩球体是普通玻璃和颗粒状材料(如沙子或砾石)的简单模型。然而,Parisi的原始模型的对象是另一个截然不同的系统——自旋玻璃。这是一种特殊的磁性金属合金亚稳定状态,其中某种金属原子,比如铁原子,会被随机混合到铜原子的网格中。即使只有几个铁原子,它们也会以一种令人费解的方式彻底改变材料的磁性。每个铁原子的行为——或者称为“自旋”——表现得就像一个小磁铁,受其附近其他铁原子的影响。在普通的磁体中,所有的自旋都指向同一方向,但在自旋玻璃中,情况就不一样了:一些自旋对会指向相同的方向,另一些则指向相反的方向——那么它们是如何找到最佳方向的呢?

  Parisi在关于旋转玻璃的著作的序言中写道,研究旋转玻璃就像观看莎士比亚戏剧中的人类悲剧。如果你想同时和两个人交朋友,但他们互相讨厌对方,结果就可能令人沮丧。在经典悲剧中,感情强烈的朋友和敌人在舞台上相遇,情况就更是如此。那么,怎样才能把房间里的紧张气氛降到最低?

  自旋玻璃及其奇异的性质为复杂系统提供了参考模型。20世纪70年代,许多物理学家,包括几位诺贝尔奖得主,都在寻找某种方法来描述这种神秘而令人沮丧的旋转玻璃。他们使用的方法之一是“副本方法”,是一种研究无序态体系时所用的数学技巧,可以在同一时间内处理系统的许多副本。然而,从物理学的角度来说,最初的计算结果并不可行。

  1979年,Parisi取得了决定性的突破,他展示了如何巧妙地利用副本方法来解决自旋玻璃问题。他在这些副本中发现了一个隐藏的结构,并找到了一种描述它的数学方法。在很多年之后,Parisi的解才在数学上被证明是正确的。此后,他的方法被用于许多无序系统,成为复杂系统理论的基石。#2021诺贝尔奖#

#在成都追光是一种什么体验#
当我在追光,我与光同航✨
唯有爱能温暖人心
唯有光能给人希望
因为光的存在
世间的黑白才会清晰
成都的光是温暖的
我们一直在追光的路上
人们常说
心中有光,前方就是康庄大道
心中无光,前方就是荆棘满地
我们追逐着光
不仅因为光代表着希望与热爱
更是因为在沧海横流中
它能带我们寻找前行的方向
我们也渴望活成一束光
照亮他人,也照亮自己 https://t.cn/R2WxuoH

菜勤奋是一种财富农https://t.cn/EXw7WW3之看那些光荣的中雨打不弯能每天拥有阳光般的青松。男女老少人所缺少的不是才华而是志向,都有,穿着朴素破旧,鞋上面劳动赢多勤奋的财富吧,努力吧,加得了尊笑容健康的身体。朋友们,趁着现在还早,赢得您是创新的一年,新一切都是新的造奇迹的了荣快只是幸福的伴随现光沾满了灰尘间给勤劳看你是不是能发现更者勤劳工作诚恳径不下功夫,却能成油吧,让我们得到更多勤奋的功,一勤劳动者,是您哺育了我们,我天下让我们去寻找春风姐无难事,姐留下的种子,用心去播种,等待秋天让梦想的种子结出你用辛勤劳动合成的希望的果实!#成都婚纱摄影#


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • P3这个人真的无语了,说是你们bjyx的歌,其实呢?你这狗眼还不如扒了滤镜去看看你们的“战战”呢,他一个人就够“好”的了,看别人干啥啊?
  • 02头小脖子长,蹄子上有“海绵垫”在流沙中行走不会下陷家养的骆驼是人类忠实的伙伴,是进入沙漠、戈壁必不可少的帮手,还能运载沉重的货物。在新疆罗布泊野骆驼自然保护
  • 極速大約地看完公式書的超短篇(所以可能有錯)嘛 能有一個讓自己剖白罪過的對象很難得的,見到她哭都挺難得…真好呢,雖然我都有這種人但永遠過不到自己的防線(at f
  • 精神之所在,大乘教裡講得很清楚,就是你要放下分別執著,你看持戒要沒有分別、沒有執著。有分別執著在裡面是凡夫,剛才講了,只學到佛的外表;沒有分別執著那就契入心性。
  • 杜新枝公开发声,重提往日细节,内涵许敏涉嫌偷换如果您是刚刚关注二八事件的网友,恐怕会被网络之上的各种声音弄得有些疑惑。从最初的受害者、起诉者,成为了偷换者,这样
  • 每天摆烂又快乐的日子,没事儿就刷剧看综艺电影,看看书,跟lsy,李老师一起打打游戏,想吃啥就能点啥,无聊了就去骚扰朋友们骚扰我妈妈,奶奶,我哥我妹他们[跪了]还
  • 并呼吁大家抵制扫图自制【说说历史上这位替坏人说话的高僧】首先直奔主题:这位替坏人说话的高僧就是东晋时期的道生大师;这里说的坏人,不是指某一个或几个人,而是某一类
  • 【设计下乡,让古朴村落焕然新生】重庆之声4月11日讯 古树、古井,小青瓦、木护墙、穿斗房……位于渝北区洛碛镇大天池村的杨家槽,是我市首批传统村落之一,如今这坐拥
  • [拜拜][拜拜][拜拜]光头你是没钱请画师了吗?[太开心][太开心][太开心]看看你的开服四星卡(图三)再看看现在……[微笑][微笑][微笑]自从11上次的卡面
  • 还要参加的快点找我报名精彩活动➕现场优惠不要错过咯#中英双语美丽分享会#欢迎布里斯班和黄金海岸的伙伴参加#SuperAce##晳之密澳洲##皙之密 ##零底妆
  • tmd 一点半了,明天还要早起上课啥时候才能不用早起,我讨厌起床[泪][泪][泪]真诚 抵过所有 从刚上研的想逃离 到现在的状态 我的自愈能力还是️的 虽然到现
  • 针对提出来的问题要再研究再安排,融媒体中心要在现有平台基础上,将平台的软硬需求和老百姓的日常生活联系起来,报道出更多有质量的优秀新闻作品,使媒体融合效应得到充分
  • 【助力乡村振兴,为扎根乡村的团员青年点赞[中国赞]】在共青团中央表彰的全国“两红两优”组织和个人中,有这样一群人,他们扎根乡村,勇挑重担,他们的目标是让老百姓
  • 你站的方向,风吹过来都是暖的这个周末,想赖床,想疯狂,想抹杀那一缕忧伤,夜的第七章,你和我,躲在城里,享受月光。看得我好难受,好在TVB都是经典合欢大团圆的结局
  • 嗯,看得出来很照顾了,毕竟立马送上热搜了[捂脸] 不得不说,邓超和撒贝宁这段友情,也让人慕了,一个是真出力照顾,一个是真配合,两人合力贡献了一台精彩的节目
  • 今の明るさや先輩後輩関係なくHKT48というグループが楽しさに包まれているのはしげさんのおかげです。#村重杏奈[超话]# #田岛芽瑠[超话]# 211227 i
  • [钟][钟][钟]转发抽奖[钟][钟][钟][杰瑞]关注+转发此微博,活动结束后抽1人送一只【随机粘土人】***抽到恶意跑单或者差评者重新抽,@微博抽奖平台『朱
  • 致力于人防地下室,隧道等砖砼结构建筑的渗漏水等问题的研究,专业从事纳米反压注浆工艺技术的推广及应用真诚为您服务,帮您解决渗漏水问题的后顾之忧,愿与国内同仁一道为
  • ○ 做主妇的懂得一点美术图案,能够自出心裁装饰家庭,也是替丈夫节省经济的一法,一方面教养子女,启发童年的智慧,滋助学业的长成!○ 商店的店伙与学徒,能懂得一点实
  • 也太小看杨家将了吧~大大的无语能不能不要出来犯j啊!真的对你们家失望透了!