负极突破主基调:研制更高比容低成本的材料

负极的格局相比正极的格局更加清晰,传统的石墨负极仍然是主流的应用产品。但是更高比 容负极的开发对于未来先进电池体系的推进仍然是有必要的,硅基负极、金属锂负极是研发 的热点。总体来说,负极的开发方向是低成本、高比容。

我们认为,碳材料无论是当下还是未来,仍然是重要的负极基体,在实现更高比容负极的过 渡阶段,碳材料的加入不仅能够起到提升导电性的作用,也是重要的承载物质。在中期的产 业应用上,硅基负极则具备较大的推广可能性,特斯拉的硅碳负极已经实现商用,但并非完 全的硅负极,为将硅的性能更完全的释放,仍然需要通过材料改性等手段持续开发;长期来 看,金属锂负极因高比容低电位而具有应用潜力,但是在动力领域所面临的困难需要较长时 间来解决,如锂枝晶带来的安全风险等,因此金属锂负极可能中短期在无人机等细分领域进 行推广商用,在渐进式的演进前提下,在车用动力领域预计还需 5-10 年的产业化过程。

负极当下格局:碳基是商用主流,钛酸锂因高安全应用于细分领域

负极是储锂的主体,其中碳材料是负极商业化应用中的首选与主流。锂二次电池负极材料在 充放电过程中实现锂离子的脱嵌,选用时遵循比容高、电势低、循环性能好、兼容性强、稳 定性好与价格低廉等原则。理论上,金属锂因低电势和高比容是理想的负极,但活性锂与锂 枝晶等带来的安全问题阻碍其发展。碳材料因价格低廉、为层状晶体带来较高比容量(LiC6 理论比容为 372mAh/g)、循环性及安全性好,取代金属锂作负极,推动锂二次电池商业化。

碳基材料种类繁多,当下负极材料中人造石墨和天然石墨是主流产品。若按照结构划分锂离 子电池碳材料,包括石墨、非石墨与掺杂型碳,石墨类又可分为天然石墨、人工石墨、中间 相碳微球等。天然石墨成本低、技术成熟度高,但首效较低、倍率性能较差,主要用于消费 类电池。人造石墨则一般采用致密的石油焦或针状焦作前驱体制成,避免天然石墨的表面缺 陷,首次效率与倍率性能提升,因此在动力领域份额不断扩大。据 GGII,2020 年中国锂电 池负极材料出货量 36.5 万吨,同比稳健增长,其中人造石墨占比 84%,份额逐年提升。

石墨类产品应用中存在缺陷,通过改性来提高产品性能。如天然石墨存在表面缺陷多、各向 异性容易析锂等问题:(1)针对其表面缺陷多、电解液耐受性差的问题,采用表面活性剂、 包覆等方式进行改性,提高部分性能;(2)针对其强烈各向异性的问题,工业生产中常采用 机械处理的手段对颗粒形貌进行球形化整形,处理后粒径 D50 范围 15~20μm,首效和循环 性能明显改善。人造石墨因各向异性导致倍率性能、低温性能差,充电易析锂的问题,其改 性不同于天然石墨,一般通过颗粒结构重组降低石墨晶粒取向度。

具备某方面突出性能优势的负极材料如钛酸锂,可满足特定需求,适合在部分细分领域应用。嵌锂碳材料因本身理化性质具有以下缺陷:(1)形成 SEI 膜,循环过程中造成 Li+损耗与碳 材料结构的破坏;(2)析出锂枝晶,增加安全隐患。在公共交通领域电动化进程中对安全性 的诉求落实到负极材料,需要负极电位稍正于碳、更加安全可靠。尖晶石型钛酸锂(Li4Ti5O12) 因具备突出的安全性能优势,在公共交通领域有一定应用:

“零应变材料”,结构稳定。在循环过程中,锂离子逐渐嵌入,最终形成深蓝色的岩盐相 Li7Ti5O12,晶胞参数由 0.836nm 变为 0.837nm,体积变化小于 0.2%,“零应变”下材料 结构稳定,循环性好;
嵌锂电位高,不易引起锂枝晶。钛酸锂嵌锂电位为 1.55V,高于锂离子的还原电位,因 此不易产生锂枝晶,提升安全性;

不生成 SEI 膜,再次提高安全性。因高于电解液的分解电压而不会生成 SEI 膜,没有 SEI 膜被破坏脱落的隐患;

循环过程中锂离子扩散系数也高于碳负极体系,因此是具备高循环优安全的负极材料。

钛酸锂劣势明显,克容量低、倍率性能差、成本高等问题限制更大范围的使用。(1)材料理 论克容量 175mAh/g,电压平台较低,因此比能量较低;(2)导电性能差,导致其在大电流 放电条件下极化严重,容量衰减快,倍率性能差;(3)吸湿性强,导致高温产气严重,高温 循环性能差;(4)材料制备工艺复杂,成本高,电芯成本是相同能量 LFP 电池的 3 倍以上。

钛酸锂改性方法多样,但往往无法保持综合性能,有待更深入开发。(1)改善材料形貌尺寸, 如颗粒纳米化、球化、多孔化等,缩短锂离子进出路径,提高比容量,但易造成与电解液的反应而形成 SEI 膜;(2)金属掺杂后的改性材料导电性提高,但循环稳定性可能会降低;(3) 表面改性如碳包覆技术,可以提高电子电导率,但包覆后锂离子会在脱嵌过程中受到一定阻 碍。综合看,寻找合适的离子、适当的掺杂比例、改性技术的结合是未来工作的重点。

现有负极比容已接近上限,高比容潜力负极中硅基优势显著

高比能诉求下,现有商用负极难以满足需求,需要以更高比容的材料替代。(1)市场上的高 端石墨比容可达 360-365mAh/g,已接近理论上限,而钛酸锂等本身理论比容较小,因此均 难以满足更高比能的需求。(2)商业化负极尤其是碳负极材料,因嵌锂电位低,在循环过程 中可能会形成锂枝晶而引起电池短路。需针对问题开发更高比容的新型负极材料。

在众多可选的新型负极材料中,硅基材料是较具开发潜力的类型。高比容非碳负极包括锡基、 硅基、氧化物、过渡金属氮化物以及金属锂负极等。比较理化性质,硅基具备应用优势:(1) 按照理论比容排序,硅基负极可达 4200mAh/g,而其他负极大部分在 900mAh/g 左右;(2) Si 的嵌锂电位高于碳,析锂风险小;(3)Si 与普遍应用的电解液反应活性低,嵌锂过程中不 会引起溶剂分子与 Li+共嵌入的问题;(4)Si 是地壳中第二丰富元素,价格低廉。

硅基负极的规模应用需解决体积效应等关键问题:(1)巨大的体积变化带来材料的粉化与电 极的破坏。硅与锂的合金化反应使硅发生 1-3 倍的体积膨胀,材料产生裂纹直至粉化,带来 容量的快速衰减,较大的应力下影响结构稳定性,安全风险提高;(2)体积的变化使 SE I 膜 出现破裂与生成的交替,消耗活性物质与电解液,导致电池的内阻增加和容量的迅速衰减;(3)硅的导电性差,在高倍率下不利于电池容量的有效释放。

针对硅基负极的改性研究集中在解决体积效应、维持 SEI 膜稳定和提高首效三个方面。优化的方向包括:(1)硅源的改性研究。即通过制备纳米硅、多孔硅或合金硅的方式改善电化学 性能,但同时也会面临工艺的复杂性等问题;(2)制备复合材料。如制备结构稳定的硅碳负 极,提高导电性,增强机械强度。在开发过程中,碳源选择和结构设计是造成性能差异的关 键;(3)制备氧化亚硅(SiOx)材料。作为石墨与硅的折中方案(比容 1500mAh/g 左右), 材料体积膨胀大大减小,循环性能提升,但首效较低也限制在全电池中的应用。

硅基负极产业化持续铺开,“硅基时代”临近

硅基负极研发集中度高,中国、日本、美国和韩国为主要申请国。统计 2000-2019 年 6 月与 锂离子电池硅基负极相关的专利数量,共计 28131 件,其中中国、日本、美国、韩国分列前 4 位。但日本、韩国和美国注重海外专利布局,中国申请人主要在国内进行专利布局。

日本申请人具有一定优势,中国申请数量大,但仍需进一步发展。统计前 100 名国际申请人 的国别,日本共有 35 家,且不同排名阶段的数量都占据绝对优势,主要有松下、索尼、日立 等。韩国则主要由三星和 LG 化学申请。中美分别有 23 家和 18 家申请人进入前 100 名。在 中国国内专利申请排名前 20 的申请人中,国外申请人依然占据较大比重,尤其是日本。中 国的企业中,比亚迪、贝特瑞、ATL 和万向集团进入前 20 名。

硅基负极产业化持续铺开,推动电池产品性能提升。特斯拉已将硅碳负极应用于 Model 3, 在人造石墨中加入 10%的硅,负极容量提升至 550mAh/g,单体能量密度达 300Wh/kg;日 本 GS 汤浅公司的硅基负极已成功应用在三菱汽车上。中国方面,宁德时代、国轩高科、万 向集团、比亚迪等正在加紧硅负极体系的研发和试生产。负极企业贝特瑞已实现硅碳负极量 产并为松下配套部分材料,杉杉股份、江西紫宸等具备小量试产能力。CATL 的高镍三元+硅 碳负极电芯比能达到 304Wh/kg,力神的 NCA+硅碳负极电芯也已达到 303Wh/kg。

产业化进程中,材料成本和生产工艺是两大制约因素。尽管硅基负极材料的性能在持续提高, 但在优化材料性能之外,还要考虑到制约产业化的其他因素:(1)材料成本:各家工艺差别较大,产品尚未达到标准化,导致价格较高。此外制备过程中常用到纳米硅粉,其生产对设 备要求高、能耗大,因此增加成本;(2)生产工艺:制备工艺较为复杂,有待成熟,并且所 匹配的主辅材对负极性能发挥影响大,相应的工艺也需要进行优化改善。

广汽应用新型硅负极材料,推动续航再上台阶。2020 年 7 月 28 日,广汽集团宣布采用新型 硅负极材料的方形硬壳电芯比能达到 275Wh/kg,将使电动车续航突破 1000km。2021 年 4 月 9 日的广汽科技日再次强调长续航技术将于 2021 年量产,采用海绵硅负极片电池技术使 电芯比能超过 280Wh/kg(未来提升至 315Wh/kg),同时解决硅材料膨胀问题。这将是全球 首次将新型硅负极材料应用到大型动力电池电芯产品,使硅材料的动力领域实用化更进一步。

来源:DT新材料

新材料智库

4000米高山上的这个观测站 希望为宇宙线起源之谜“一锤定音”

  LHAASO是目前和未来20年内最强的超高能伽马射线探测装置,部分阵列近1年观测已经接连取得突破性进展,未来有望带领我们揭开银河系内宇宙线起源这一世纪之谜,并在超高能伽马波段这一最高能量电磁波窗口探索浩瀚宇宙。

  浩瀚宇宙,渺渺星空,在空荡荡的星际空间,有许多肉眼不可见的微观高能粒子在以接近光速飞行。平均而言,这些粒子可以在银河系内飞行百万年,其中有极少部分粒子与地球不期而遇,成为地球上神秘的“天外来客”。

  1911年,奥地利物理学家赫斯乘坐气球,飞行到5千米的高空,首次发现这位来自宇宙的“客人”,这位“客人”被命名为“宇宙线”,赫斯也因宇宙线的发现获得了1936年的诺贝尔物理学奖。这一发现开启了人类探索宇宙奥秘的新篇章。

  近日,国家重大科技基础设施高海拔宇宙线观测站拉索(LHAASO)正式通过性能工艺验收,这标志着拉索已经建成,并正式进入科学运行阶段。建在4000米高海拔山端的拉索,以探索高能宇宙线起源以及相关的高能天体演化和暗物质研究为核心科学目标,正式开始科学运行后每天可以积累1.7亿个超高能宇宙线事例和20多亿个甚高能宇宙线事例。

  什么是宇宙线?

  赫斯是通过宇宙线在空气中产生的电离效应来证明其存在的,随后产生的首个问题就是宇宙线是什么粒子,这个问题困扰了人类很长时间。

  刚开始,大多数人误认为它是来自宇宙的一种远高于X射线的高频电磁辐射,“宇宙线(即宇宙射线)”这个名字就是美国实验物理学家密立根在1925年首次提出,虽然这是当时对宇宙线的一种错误认识,但是这个名字一直沿用至今。

  1932年,美国物理学家康普顿组织了大量人力对地球上不同地理纬度的宇宙线强度进行了测量,发现了地球磁场对宇宙线强度的调制效应,判定原初的宇宙线是带电粒子,而不是光子。

  如今,人类可以利用先进的粒子鉴别技术,搭载高空气球、卫星或空间站到大气层顶部直接测定宇宙线的种类,知道了宇宙线主要是由带正电的原子核组成,其中含量最高的是质子(即氢原子核),还有元素周期表中的多种原子核,还包含少量光子、电子、中微子以及反粒子等。

  在人造粒子加速器诞生之前的时代,宇宙线是唯一的高能粒子源,是人类研究高能微观粒子与物质相互作用规律的唯一工具。20世纪60年代,人造加速器的发展和粒子对撞机的出现,让宇宙线在粒子物理中的作用被取代,宇宙线的研究也逐渐转向粒子天体物理方面。

  宇宙线源自何方?

  迄今为止,人们观测到的宇宙线粒子的最高能量已达到1020电子伏特(eV),是人类最大的粒子加速器——欧洲核子中心大型强子对撞机所能加速粒子能量的1000万倍。这么高能量的宇宙线起源于什么天体?它们是如何被加速到极端高的能量的?这些问题长期推动着人类去探索宇宙和大自然的奥秘,其中最基本最核心的问题是起源问题,被称为“世纪之谜”。

  宇宙线为带电粒子,在传播过程中会被宇宙空间中的磁场影响后偏转运动方向进而失去源头位置信息,所以通过宇宙线粒子探测并不能找到宇宙线的起源天体。宇宙线的能谱从1011eV到1020eV大体呈现为幂律形式,表现为非热加速起源特性。中间有两个明显特征:在1015eV附近能谱变软,呈现出“膝”形结构;在1018eV附近能谱变硬,呈现出了“踝”形结构,这些结构蕴含关于宇宙线起源的重要信息。根据银河系内天体的尺度和磁场强度对宇宙线加速上限的估计,一般认为,“膝”区能量及以下的宇宙线起源于银河系内的天体源,而“踝”区能量以上的宇宙线起源于银河系外。

  宇宙线的测量特征说明其起源于非热辐射过程,而且能量非常高。人类根据对太阳的认识,认为普通的恒星不可能把粒子加速到如此高的能量。因此,宇宙线的发源地必然进行着极端剧烈的变化或者具备极端的物理条件。根据伽马射线天文观测结果,目前的候选天体主要有超新星及其遗迹星云、脉冲星及其风云、年轻大质量星团、双星系统、伽马射线暴、活动星系核等,这些候选源的共同特征是存在强激波。

  如何探寻宇宙线?

  高能伽马天文、高能中微子天文、极高能宇宙线天文是寻找宇宙线起源的三大重要支柱。高能中微子和极高能宇宙线天体源的探测可以为宇宙线起源探索提供“一锤定音”的证据。

  此外,伽马射线是示踪其父辈带电粒子加速的重要探针,这些伽马射线天体源为宇宙线起源天体的寻找提供了重要的候选天体。伽马辐射存在两种可能的起源:一是高能电子与低能光子逆康普顿散射过程产生,即轻子起源;二是高能强子宇宙线与周围物质通过强子—强子相互作用的次级中性π介子衰变产生,即强子起源。

  强子宇宙线在宇宙线占据绝对主导份额,宇宙线起源问题的研究就是寻找强子宇宙线的起源天体。所以通过伽马射线观测寻找宇宙线起源的重点就是确定伽马射线的辐射机制,排除轻子起源和寻找强子起源证据,但是这同时也是难点所在,因为大部分源在GeV-TeV(1G=109,1T=1012)能区,很难区分这两种辐射机制,目前大部分伽马射线源倾向于轻子源。

  轻子辐射和强子辐射的一个区分点是在超高能区。高能电子在星际磁场与辐射场中的冷却时标随能量升高而变短,100TeV以上存在Klein-Nishina高能压低效应,而强子源辐射的100TeV以上伽马射线不存在这些问题,因此超高能伽马射线是目前通过伽马射线确认宇宙线起源的希望,而且可以直接解决能量达PeV(1P=1015)量级的银河宇宙线起源问题,LHAASO就是为此目标而设计的。

  拉索能做什么?

  LHAASO作为近年来以宇宙线观测研究为核心的国家重大科技基础设施,探测面积达到1.36平方千米,是国际同类装置西藏羊八井ASγ实验的20倍和美国HAWC实验的60倍。LHAASO在超高能区的灵敏度是国际同类装置10倍以上,同时也远高于下一代大型切伦科夫望远镜阵列,预计未来相当长时间内在超高能区保持国际领先。此外,LHAASO还是全球最灵敏的大视场甚高能伽马射线探测装置。

  基于1/2阵列11个月数据,LHAASO取得了第一个突破性进展,并于2021年5月17日发布在《自然》上,即发现了12个高显著的稳定超高能伽马射线源,其光子能谱一直延伸到1PeV附近未见明显截断,从而确认了银河系内首批PeV粒子宇宙加速器,并揭示PeV加速器在银河系内可能普遍存在。这些发现开启了超高能伽马天文观测时代,表明年轻的大质量星团、超新星遗迹、脉冲星风云等是银河系内加速超高能宇宙线的最佳候选天体,为破解宇宙线起源这个世纪之谜指明了方向。

  这次成果还包括记录到迄今人类观测到的最高能量光子,能量达1.42±0.13PeV,该区内部大量存在恒星生生死死的剧烈活动,具有复杂的强激波环境,是理想的宇宙线加速场所。如果LHAASO未来进行深入观测,则有可能为强子辐射起源提供强有力证据,将成为解开“世纪之谜”的突破口。

  2021年7月9日,《科学》发布了LHAASO的第二个重要科学成果,测量了高能天文学标准烛光蟹状星云的最高能量端能谱,此次研究不但确认了此范围内其他实验几十年的观测结果,还将标准烛光的测量范围由0.3PeV拓展至1.1PeV。

  LHAASO预期每年可以记录到1—2个来自蟹状星云的PeV光子,未来几年内将可以探索更多关于PeV粒子加速的奥秘。

  LHAASO是目前和未来20年内最强的超高能伽马射线探测装置,部分阵列近1年观测已经接连取得突破性进展,其全阵列已于2021年7月正式开始运行,未来有望带领我们揭开银河系内宇宙线起源这一“世纪之谜”,并在超高能伽马波段这一最高能量电磁波窗口探索浩瀚宇宙。

  (作者系中国科学院高能物理研究所研究员,原载于《前沿科学》2021年第3期,有删节)

测电源电动势和内阻误差分析梳理理解

误差来源:电流表分压
电压表测路端电压即滑动变阻器电压,电流表由于不是理想电流表故有内阻即用电器与电阻串联产生分压作用(电流表测得电流为实际通过电源电流),导致电压表测得的U值<U实际【U实=U电流表+U电阻】由公式E=U+Ir分析知,当电路中电流为零时U=E(E测=E真),电路中有电流测量时,U值比真实值小,故电流相同时,E测<E真,即相同的E,I测<I真(I短测<I短真),r测=E测/I短测=r+R电流表>r真
注意:当知道电流表内阻确切大小时可消除误差,即用r=r测-R电流表


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 散场的时候,你和转头和他说“彭|彭拜拜”我还以为只是在ig玩梗而已…毕竟平时直播和采访里阿华都是叫他“千|祐”原来私下里真的叫彭|彭呀…感谢拍到这一段的姐妹…让
  • !!
  • ——网易云音乐热评《画》8.对我来说,风光无限的是你,跌落尘埃的也是你,重点是“你”而不是“怎样”的你——墨香铜臭 《天官赐福》9.想和你有个像你一样的儿子这样
  • 它不坚持它自己的方式,它不是易怒的或怨恨的。#CATTI# #晚安# 爱是耐心,爱是和蔼,爱不是嫉妒或自夸或憿慢或粗野。
  • “喂喂,你别过来,再过来我死给你看。“喂喂,你别过来,再过来我死给你看。
  • 心里甜滋滋的☺️出其不意的小感动,浇灌了心灵,平凡又简单,感受到被爱,愿所有人都能够活在爱里,不管亲情,友情,爱情,还是自己爱自己,我会坚持收集世间温暖小故事,
  • #和小q同学的友好交流# 六一~报告各位我要开始笑了哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈这显得我这个人很没有诚意[泪][泪]被自行车甩飞了的两个蛋糕但是真的好好笑显然
  • #六一还得看pel# ⚡️#2023pel夏季赛# 【赛事播报】2023PEL夏季赛 常规赛第一周突围赛Day 1第 3场TPP雨林本场淘汰:4本场排名:10目
  • 任猛哥每次都要笑死我,今天中午发了个朋友圈,喊我出来玩,我就跟她聊天去,她的头像真的超级搞笑,他每次的头像都好笑哈哈哈哈哈 然后决定去书店街买那个好吃的麻花,我
  • #青理青春学堂# 【笔墨稠】 听闻古琴有七弦 一弦伊为舞女翩 两弦良人诺誓言 三弦散离天涯远 四弦思量夜夜寒 五弦误了情深浅 六弦留得时光晚 七
  • [打call]好啦结束完美今周啦(呜呜呜呜伤心的事情好多都没有说)不过在这里也祝大家身体健康,学业事业顺利!已经是弄的第二次啦)还有阿姨给我的橘子哈哈哈哈阿姨可
  • 16岁的时候会因为想要的注意而排练整个六一晚会的所有节目 可惜找不到那天的视频了 只能找到那天老师买奶茶的了 他在台下注视着我时双方都红透的脸颊16岁的时候会仔
  • ” ▫“捧花见面永远是件超级浪漫的事.” ▫“苟于山川,不追赶日月,如此安好。#长空之王[超话]##看长空之王的泪目瞬间##长空之王# 二刷依旧控制不住我
  • 综上所述,我国航天人真的太牛了,仅仅用了12年的时间,就将载人航天器快速交汇对接的时间从44小时缩短到了6.5小时,而货运飞船交汇对接时间更是缩短到了2小时,这
  • 目前一项新兴科学技术,能够在不会对孕妇以及腹中胎儿造成任何损伤的情况下,通过抽取静脉血抽取的方法,来最终确定胎儿的生父,这项技术是非常成熟且稳定的。目前,19号
  • #柳智研看演出偶遇宝宝宝宝~# 脸 真好看真好看真好看真好看[嘻嘻][嘻嘻][嘻嘻][嘻嘻] [咖啡][咖啡][咖啡][咖啡] #中国顶流脸柳智研##完
  • ⑤投射比投影比小的投影仪投出的距离会比较小,那么就无法提供远距离的投射,比较适用于小空间,那么反之,家里的空间大的话,就还是比较提倡购买大投射比的投影仪了。优先
  • #ENHYPEN[超话]# #ENHYPEN新曲Bite Me初一位# 【230601 成员更新】#ENHYPEN #JUNGWON #엠카#BiteMe #D
  • 文冠果产业链的开发利用,已成为兴和村唯一的支柱产业,助推着乡村产业高质量发展之路。逐步打造企业内“小循环”、链接产业间“中循环”、带动区域内“大循环”的循环经济
  • “这是谁的大脑” “我的,出现这幅思维图景时,我正在想你” 随着老人们的离去,渐渐远去的黄金海岸完全消失在历史的烟波之中。现在,人类文明的航船已经孤独的驶到了