《声波枪的杀伤力有多强?》声波枪也称次声枪,是以次声波来进行杀伤和起破坏作用的一种武器。次声波是人耳听不见却能感觉到的低频振动。这种振动对人体的危害是很大的,轻者会使人头昏、呕吐和呼吸困难,重则致人昏迷、瘫痪,甚至因内脏器官破裂而死亡。次声波还可以穿透建筑物、掩蔽工事,甚至坦克和潜艇,杀伤其内部的乘员。另外,次声波还可整夜地对目标进行干扰,让强烈的声波通过人的身体,使人彻夜难眠。连续的失眠会导致人无法完成工作任务。https://t.cn/A6iS0B6C

【运行两周年,#中国天眼大成果登《自然》封面#】1月6日凌晨,《自然》杂志以封面文章形式发表了“中国天眼”(FAST)的最新成果。

在该成果中,中国科学院国家天文台研究员李菂等领导的国际合作团队,通过FAST平台,采用原创的中性氢窄线自吸收方法,首次获得原恒星核包层中的高置信度的塞曼效应测量结果。研究发现,星际介质具有连贯性的磁场结构,异于标准模型预测,为解决恒星形成三大经典问题之一的“磁通量问题”提供了重要的观测证据。#中国天眼重磅成果发布##中国天眼考虑1%观测时间对中小学生开放#

记者了解到,这是FAST产出的系列重大成果之一。自2020年1月11日通过国家验收至今,FAST已运行近两周年,基于超高灵敏度的明显优势,它已成为中低频射电天文领域的观天利器。

相关论文链接:
https://t.cn/A6JAu1Px
https://t.cn/A6MNMGUc
https://t.cn/A6JAu1PJ
https://t.cn/A6JAu1Pi

△ 又一重磅,挑战恒星磁场的标准模型

磁场在恒星、行星和生命的产生中发挥着重要作用,过程复杂。“磁通量问题”是恒星形成中经典三大难题之一,分子云的星际磁场强度测量是全球天文界的共性挑战。

恒星诞生于分子云中,分子云中的致密区域发生塌缩,最终形成恒星。恒星磁场的标准模型认为,在恒星形成的过程中,磁场和重力是相互抗衡的力量,在分子云密度高的地方,重力越大,磁场也越强。按照这一模型,一颗恒星的形成过程中,重力和磁场不断拉扯,以至于恒星的形成需要上千万年。

但是,要测量分子云的星际磁场强度并不是件容易的事。目前,可用于测量磁场强度的唯一手段就是“塞曼效应”。1896年,荷兰物理学家塞曼发现,把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线。根据光谱的变化,科学家就可以反推出磁场的强度。

但是,要探测分子云的塞曼效应却难度很大。“分子和磁场的作用普遍非常弱,塞曼效应也非常弱。”李菂说。

为了更好地测量出星际磁场,李菂团队另辟蹊径,原创出一种通过测量氢原子的谱线来测量星际磁场的方法——“中性氢窄线自吸收方法”。“原子对磁场的响应会比分子强,氢原子是宇宙中丰度最高的元素,广泛存在于宇宙的不同时期,也是不同尺度物质分布的最佳示踪物之一。”李菂说。

FAST为李菂等人提出的新方法创造了应用的机会。“FAST望远镜是探测暗弱中性氢源的利器。”李菂说。

通过FAST望远镜,他们测量了L1544 分子云包层的磁场强度,首次实现了原创的中性氢窄线自吸收方法塞曼效应的探测,也实现了利用原子辐射手段来探测分子云磁场的从0到1的突破。

研究人员发现,与标准模型的预测结果不同,星际介质从恒星外围的冷中性气体,到原恒星核,具有基本一致的、连贯性的磁场结构。“由此,我们将恒星形成的时间从上千万年减少到百万年。”李菂说。

这一研究成果引起了国际学者的关注。未参与此项研究的美国伊利诺伊大学教授理查德·克鲁切尔(Richard Crutcher)评价:“通过观测中性氢窄自吸收线的塞曼效应,FAST首次揭示了在恒星形成的早期阶段,磁压不足以阻止引力收缩,这与恒星形成的标准理论不一致。这一发现对于理解恒星形成的天体物理过程至关重要,并显示了 FAST 在解决重大天体物理问题方面的潜力。”

△ 运行两年,FAST产出一系列大成果

从2020年1月11日通过国家验收至今,两年来,来自FAST的好消息频传。仅2021年,FAST就产出了不少重要成果。

2021年10月14日,《自然》杂志发表了FAST获得迄今最大快速射电暴爆发事件样本的成果。快速射电暴(FRB)是宇宙中最明亮射电爆发现象,由于起源未知,它成为天文学研究的热点。国家天文台科研人员领导的国际合作团队,利用FAST对快速射电暴FRB121102进行观测,在约50天内探测到1652次爆发事件,获得迄今最大的快速射电暴爆发事件样本,超过此前本领域所有文章发表的爆发事件总量,这一成果还首次揭示出快速射电暴爆发率的完整能谱及其双峰结构。

“FAST多科学目标巡天已经发现至少6例新快速射电暴,正在为揭示这一宇宙中神秘现象的机制、推进这一天文学全新的领域做出独特的贡献。”国家天文台副研究员王培说。

2021年5月,国内学术期刊《天文和天体物理学研究》发表了FAST持续发现毫秒脉冲星的成果。发现脉冲星是国际大型射电望远镜观测的主要科学目标之一,国家天文台研究员韩金林领导的FAST重大优先项目“银道面脉冲星快照巡天”在不到两年时间,累计观测了约620个机时,完成了计划搜寻天区的8%。澳大利亚科学院院士曼彻斯特(Manchester)教授评价“发现这么多脉冲星令人印象深刻”,“发现如此众多毫秒脉冲星,是一个显著的成就”。

“截至目前,该项目新发现279颗脉冲星,其中65个为毫秒脉冲星,在双星系统中的有22颗。”韩金林说。

2021年12月,国内学术期刊《中国科学》以封面及编辑点评文章形式发表了FAST开展多波段合作观测的成果。在这项成果中,国家天文台科研人员领导的国际合作团队,将FAST与高能波段的重要空间天文设施——费米伽马射线天文台大视场望远镜(Fermi-LAT)相结合,进行天地一体化协同和后随观测,发现了多颗脉冲星,多波段合作观测不仅开启了FAST脉冲星搜索新方向,而且打开了研究脉冲星电磁辐射机制的新途径,为研究中子星星族演化和探测引力波提供了更多样本。

△ 面向未来,观天利器正摩拳擦掌

FAST频繁产出大成果,与其运行效率和观测质量密不可分。“一年来,中科院深入贯彻落实总书记重要指示精神,全力做好FAST的开放运行和科学研究工作,在第一时间就成立了FAST科学委员会、时间分配委员会、用户委员会,统筹规划科技方向,遴选重大项目,制定数据开放的政策,充分发挥FAST的科技效果,促进重大科技成果产出。”中科院副院长、党组成员周琪院士说。

在体制机制的保障下,2021年,FAST的年观测时长超过5300小时,已远超国际同行预期的工作效率,为FAST科学产出起到重要支撑作用。

“2021年,FAST一半的机时用于优先和重大科学项目,45%的时间用于自由申请的项目,包括10%的时间用于国际开放项目,5%的时间用于应急观测。”中科院院士、国家天文台研究员武向平说,“FAST正在考虑面向全国中小学生开放1%的观测时间,目前相关申请、遴选方法仍在讨论之中。”

他介绍,FAST的优先科学目标包括研究快速射电暴的物理机制、搜寻脉冲星、利用脉冲星测时阵列探测引力波、通过21厘米中性氢辐射探测星系和宇宙大尺度结构,此外,FAST的另一使命是寻找地外文明,包括寻找第二地球、截获外星人通讯以及寻找生命分子。

2021年3月31日,FAST正式向全球开放共享,向全球天文学家征集观测申请。此次征集收到来自不同国家共7216小时的观测申请,最终14个国家(不含中国)的27份国际项目获得批准,并于2021年8月启动科学观测。“中国射电望远镜发展坚持走‘独立自主’与‘国际合作’的道路。”武向平说。

关于未来,武向平表示,FAST将在快速射电暴起源与物理机制、中性氢宇宙研究、脉冲星搜寻与物理研究、脉冲星测时与低频引力波探测等方向产出深化人类对宇宙认知的科学成果。https://t.cn/A6JAu1P6

隔音降噪领域的新型材料——多孔吸声陶瓷播报文章
转自瓷录Ceramats
噪声,即噪音,通常被定义为“凡是人们不需要的声音”。近年来,随着工业现代化的发展和汽车数量的增强,工业噪声、道路交通噪声、建筑施工噪声、家庭和社会噪声等严重影响了人们的日常生活。噪声控制问题逐渐引起了科学工作者和国家相关部门的密切关注。采用吸声材料进行吸音降噪处理在目前是一种有效的吸音降噪方法。
多孔陶瓷是一种新型含有气孔的陶瓷基复合材料,其制造始于20世纪70年代。因其透过性好、密度低、硬度高、比表面积大、热导率低、耐高温、耐腐蚀等优良特性,使其在过滤分离、化工催化载体、生物医用植入、保温、隔热、吸声阻尼、燃烧和和阻火等方面具有良好的应用。
1 多孔结构吸声材料种类
多孔吸声材料具有许多连续、微小的孔洞。根据惠更斯原理,当声音入射到材料表面时,一部分在材料表面反射掉,另一部分则传入多孔体内部,引起孔隙中空气的振动并于陶瓷筋络发生摩擦。由于粘滞性和热传导效应,将声能转变为热能而消耗掉。声波在刚性壁面反射后,经过材料回到其表面时,一部分声波透射到空气中,一部分又反射回材料内部,声波通过这种反复传播,使能量不断转换消耗,如此反复,从而达到吸声的效果。
目前多孔结构吸声材料通常分为三大类,即有机多孔吸声材料、无机多孔吸声材料和多孔金属吸声材料。
2 多孔吸声陶瓷的制备方法
1978年美国首次成功研制了多孔陶瓷材料,他们利用氧化铝、高岭土等陶瓷材料制成多孔陶瓷用于铝合金铸造中的过滤,可以显著提高铸件的质量,降低废品率。此后,多个国家竞相开展了多孔陶瓷的研究,形成了一个新兴产业。研究者采用圆管理论模型,研究了多孔材料空隙率、孔径、材料厚度以及理论模型,研究了多孔材料孔隙率、孔径、材料厚度以及结构因子对吸声性能的影响。
结果表明:
控制多孔材料孔径和厚度不变,吸声性能随着孔隙率增加而提高;
控制多孔材料厚度和孔隙率不变,吸声性能随着孔径的减小而提高;
控制多孔材料孔径和孔隙率不变,其低频吸声性能随着材料厚度的增加而提高,而高频吸声性能有所下降;
在材料厚度、孔径和孔隙率保持不变的情况下,结构因子对材料低频吸声性能没有明显影响,而在中高频范围内出现吸声系数的周期性变化。采用不同的方法制备出多孔陶瓷的性能具有很大差异,孔隙率、材料厚度和孔径大小是影响多孔陶瓷具有良好吸声性能的重要因素。
目前制备多孔吸声陶瓷材料常用的方法有颗粒堆积烧结法、添加造孔剂法、有机泡沫浸渍法、发泡法、溶胶凝胶法等。
① 颗粒堆积烧结法
是利用骨料颗粒的堆积烧结而连接形成多孔陶瓷,骨料颗粒间可以通过添加与其组成相同的细微颗粒来连接,在一定温度下烧结将大颗粒连接起来;也可以使用一些高温下能与骨料间发生固相反应而将颗粒连接起来的添加剂,或是一些在烧结过程中可形成膨胀系数与化学组分都与骨料相匹配、并且能在高温下形成与骨料相浸润的液相的添加剂。
② 添加造孔剂法
该工艺在多孔陶瓷制备中具有广泛的应用,它是通过在陶瓷配料中添加挥发性或可燃性造孔剂,如木屑、煤粉、塑料粉等,同时利用这些造孔剂在高温下挥发或燃尽而在陶瓷基体中留下孔隙。
此法的关键在于造孔剂的选择,目的使多孔材料的气孔率得到提高。常用的造孔剂一般分为无机物和有机物两大类。前者包括易挥发性无机物碳酸氢铵、碳酸铵、氯化铵等,通过在高温下无机物的分解产生大量气体,冷却后材料会形成多孔;后者包括淀粉、碳粉等一些天然纤维、高分子聚合物,在模具压制成型的过程中自身占据一定尺寸的空间,在随后高温烧结条件下氧化,并形成一定的气孔。
③有机泡沫浸渍法
该工艺最早1963年获得专利,此后获得较大发展并成为制备多孔陶瓷应用最广泛的技术之一。其独特之处在于它凭借有机泡沫体所具有的开孔三维网状骨架的特殊结构,将配置好的浆料涂覆在有机泡沫体上,然后烧除有机物并烧结陶瓷体即得多孔陶瓷产品。
该工艺制备的多孔体的尺寸主要取决于有机泡沫体的孔隙尺寸,同时也与浆料在有机体上的涂覆厚度以及浆料的干燥、烧结收缩有关。一般而言,制得的多孔陶瓷孔隙尺寸会略小于原有机泡沫体的尺寸。同时该方法过程简单,操作方便,制备成本低,是一种经济实用且具有广泛发展前景的多孔陶瓷制造工艺。
④ 发泡法
此法发明于20世纪70年代,它是在陶瓷原料中添加无机或者有机物质在烧结器件产生挥发性的气体,从而使陶瓷中产生,经过干燥和烧结制备成多孔陶瓷。通常以碳酸钙、氢氧化钠、硫酸铝和双氧水等作发泡剂。
发泡法和有机泡沫浸渍法相比,其优点是制品的形状、成分和密度容易控制,特别适合闭孔陶瓷的生产,其缺点是对原料的要求较高,工艺上不易控制。
⑤ 溶胶-凝胶法
该工艺主要是用来制备孔径在纳米级的微孔陶瓷材料,特别是微孔陶瓷薄膜。同时该法也是制备高规整度多孔性材料的主要方法。其制备过程是将金属醇盐溶于低级醇中,缓慢滴入水以进行水解-缩聚反应,使溶液变成凝胶,干燥凝胶并结合热处理,即得到多孔制品。
此法制备的多孔陶瓷孔径分布范围很窄,孔径大小可以通过溶液组成和热处理工艺来控制,但缺点是多孔制品的形状受到一定的限制,同时该工艺较复杂、成本较高、产量较低等。有研究者采用铝粉在氯化铝溶液中水解方式制备铝溶胶,并直接将成孔剂与之混合来制备氧化铝多孔陶瓷。
除了以上常见的几张方法,多孔陶瓷的新型制备工艺方法还有冷冻干燥法、木制陶瓷化法、凝胶注模法、自蔓延高温合成法、高能球磨法、碳热还原法、固态置换法等。
随着人们对生活质量要求的提高,吸声材料由原来应用于大型会议室、音乐厅等转向一般家庭建筑中。与传统的吸声材料相比较,多孔吸声材料有其独特的优势,尤其是多孔陶瓷材料,它具有三维网状开孔结构、耐气候、抗腐蚀、耐热和抗震等特点。但由于陶瓷材料性脆,因而它的应用范围受到很大限制。若想进一步提高多孔陶瓷材料的应用领域,陶瓷材料的增韧研究可能会成为今后的研究重点。


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 【巨蟹、双鱼、天蝎】是真的不想再等了,暧昧让他们很没有安全感,而确定的爱情又迟迟赶不来。【巨蟹、双鱼、天蝎】是真的不想再等了,暧昧让他们很没有安全感,而确定的爱
  • ”中式婚纱照几乎是每对新人必拍的一组今天这组新式的中国风婚纱照不仅有传统婚纱照的仪式感也有现代年轻情侣间的俏皮甜蜜互动搞怪又好玩画面感满满在中国红的背景下是现代
  • 新的一岁说实话我不希望它的到来,需要面对的难题接踵而至。TI后我们经历了大换血,两位16岁的新鲜血液注入了我们,这是一次大胆却十分坚决的尝试 尽管小伙子们甚至还
  • #100个微博年度旅行地##不止旅行# 菜品是改良过的藏餐,颜色和味道都更适合外地人的口味。演员会换不同的服饰乐器,据说都是日喀则地区的传统歌舞。
  • 这下子跟特朗普有一比了,这两届美国总统100%都感染上了新冠肺炎。无论是美国还是俄罗斯,都不担心印度仿制武器,一般都是随便卖,因为美俄都知道,印度连组装现成的配
  • 虽然潘某国非法砍伐的公益林面积和蓄积量不大,但检察机关希望通过该案,达到以案释法的目的,让更多的群众增强法律意识和环保意识,防止滥伐林木破坏环境的事情再次发生,
  • 【七处征心之二 执心在身外】阿难稽首,而白佛言:我闻如来,如是法音,悟知我心,实居身外。 ......黄帝阴符经观天(地)之道(观天地之道)执天(地)之行(根
  • 3刚顺利交班的原海尔掌舵者张瑞敏,他曾说过颇为知名的一句话:“没有成功的企业,只有时代的企业”或许正是张瑞敏洞察到了这一点,他在2005年就提出了符合互联网时代
  • 择偶要求:希望年龄在1994-1998,身高在158以上,性格温和,有稳定的工作,可以一起奋斗!希望遇到年纪24-33,身高174以上的,收入跟我差不多,有担当
  •   同时,这种命格的人,如果年月有印,能合入日时的人,往往可以轻松获得父母赠予或者继承的房产,不用自己辛苦赚钱获得房产;印在日时,大多要靠自己和子女。  自然,
  • 然而好梦终须醒,是债还须偿。姐姐一边说一边还比划着:jin ju?
  • 5年的爱情,2年多的婚姻就这么没了,说不伤心是假的。三、相爱的夫妻也抵抗不了长久的抱怨田女士和老公和平离婚,无论离婚的真正原因是不是因为老公总是加班,总之,老公
  • 我知道我的姑娘们都是很好的,我希望你们都能如愿以偿的嫁给好男孩。但他也有好的品质,天在上头,我也不能指天誓日的说,他就是个彻头彻尾的坏蛋。
  • 世间有所谓“开门七件事,柴米油盐酱醋茶”意思是日常生活要有起码的条件。一、忙是人生的滋养剂一个人如果怕做事,偷懒,如何会有成就?
  • 从肉髻中。徧虚空界。
  • 即使别人小小的意见,也会令他们难过好久,他们真的很介意,介意自己不被人喜欢。即使别人小小的意见,也会令他们难过好久,他们真的很介意,介意自己不被人喜欢。
  • 我真的永远需要朋友 昨天状态不太好 和权儿和怕我自己一个人晚上会难过 死命拉着我去唱歌 虽然还是老惯例先 云邸是我一切情绪的接收处 特别鸣谢小猪 三个小孩儿陪我
  • 不管是作为温流还是李珍基, 一直以来都真诚善良的存在着; 你曾说:不管你是谁,你在哪,一定有人比你自己更爱你。他的善良和真诚是很自然的让人觉得很舒服的。
  • 还有人称,如果真和何穗结婚,想把他打醒,由此可见,粉丝都不太希望陈伟霆和何穗有好的结局。还有人称,如果真和何穗结婚,想把他打醒,由此可见,粉丝都不太希望陈伟霆和
  • 相关负责人介绍,西安进一步加强社会面的管控,大幅减少人员流动。与居民生活密切相关的超市、便利店、医疗机构正常营业,但必须严格落实通风消杀、扫码测温、实施预约错峰