#量子纠缠究竟是什么#
什么是“纠缠”?
这是系统各部分之间的相关性。假设您有一本 100 页的书,如果您阅读 10 页,您将了解 10% 的内容。如果你再读 10 页,你会再学到 10%。但在一本高度纠缠的量子书中,如果你一次读一页——甚至是 10 页——你几乎什么也学不到。信息没有写在页面上。它存储在页面之间的相关性中,因此您必须以某种方式一次读取所有页面。
再比如,我们读包含有20个字的一句话,我们需要把整句话读完才能准确明白这句话的意思。显然,这句话的信息不仅仅只是这20个字的信息的简单叠加,更主要的是这20个字之间的关联性。
进入到量子世界,当两个或多个粒子以某种方式连接起来时,无论它们在空间中相距多远,它们的状态都会保持连接。这意味着它们共享一个共同的、统一的量子态。因此,对其中一个粒子的观察可以自动提供有关其他纠缠粒子的信息,而不管它们之间的距离如何。对纠缠态的一个粒子的任何动作都将不可避免地影响纠缠系统中的其他粒子。
谁发现了量子纠缠?
物理学家在 20 世纪初期研究量子力学时,发展了纠缠背后的基本思想。他们发现,为了正确描述亚原子系统,他们必须使用一种叫做量子态的东西。
在量子世界中,没有什么是确定的。例如,你永远不知道原子中电子的确切位置,只知道它可能在哪里。量子态概括了测量粒子特定属性的概率,例如其位置或角动量。因此,电子的量子态描述了可能找到它的所有位置,以及在这些位置找到电子的概率。
量子态的另一个特征是它们可以与其他量子态相关联,这意味着对一种状态的测量会影响另一种状态。在 1935 年的一篇论文中,阿尔伯特·爱因斯坦、鲍里斯·波多尔斯基和内森·罗森研究了相关量子态之间相互作用的强度。他们发现,当两个粒子强相关时,它们会失去各自的量子态,而是共享一个单一的、统一的状态。这种统一状态将被称为量子纠缠。
如果两个粒子纠缠在一起,这意味着它们的量子态密切相关并变得统一,那么无论粒子彼此相距多远,对其中一个粒子的测量都会自动影响另一个粒子。
第一个使用“纠缠”这个词的物理学家是埃尔文·薛定谔,他将纠缠描述为量子力学最本质的东西。
什么是 EPR 佯谬?
正如爱因斯坦、波多尔斯基和罗森发现的那样,纠缠是瞬间出现的:一旦你知道一个量子态,你就会自动知道任何纠缠粒子的量子态。原则上,你可以将两个纠缠的粒子放在星系的两端,并且仍然拥有这种瞬时知识,这似乎违反了光速的极限。
这一结果被称为 EPR 悖论——爱因斯坦将这种效应称为“远距离的幽灵行为”。他用这个悖论作为量子理论不完备的证据。但实验一再证实,无论距离如何,纠缠粒子确实会相互影响,而量子力学至今仍得到验证。
尽管纠缠系统不保持局域性(意味着纠缠系统的一部分可以立即影响遥远的粒子),但它们确实尊重因果关系,这意味着结果总是有原因的。远处粒子处的观察者不知道本地观察者是否扰乱了纠缠系统,反之亦然。他们必须以不超过光速的速度相互交换信息才能确认。
换句话说,光速施加的限制仍然适用于纠缠系统。虽然您可能知道远处粒子的状态,但您无法以比光速更快的速度传达此信息。
如何构建量子纠缠?
有许多方法可以产生纠缠粒子。一种方法是冷却粒子并将它们放置得足够近,以便它们的量子态(代表位置的不确定性)重叠,从而无法将一个粒子与另一个粒子区分开来。
另一种方法是依靠一些亚原子过程,如核衰变,自动产生纠缠粒子。还可以通过分裂单个光子并在此过程中产生一对光子,或通过在光纤电缆中混合光子对来创建纠缠光子对。
量子纠缠有什么用?
也许量子纠缠最广泛使用的应用是在密码学中。在这种情况下,发送者和接收者建立了一个安全的通信链接,其中包括成对的纠缠粒子。发送方和接收方使用纠缠粒子生成只有他们自己知道的私钥,他们可以使用这些私钥对他们的消息进行编码。如果有人拦截信号并尝试读取私钥,纠缠就会中断,因为测量纠缠粒子会改变其状态。这意味着发送方和接收方将知道他们的通信已被破坏。
纠缠的另一个应用是量子计算,其中大量粒子纠缠在一起,从而使它们能够协同工作以解决一些大而复杂的问题。例如,只有 10 个量子位的量子计算机可以表示与 2^10 个传统位相同的内存量。
什么是量子纠缠隐形传态?
与通常使用的“传送”一词相反,量子传送不涉及粒子本身的移动或平移,相反,在量子隐形传态中,关于一种量子态的信息被传输很远的距离并在其他地方复制。最好将量子隐形传态视为传统通信的量子版本。
首先,发送者准备一个粒子来包含他们想要传输的信息(即量子态)。然后,他们将这种量子态与一对纠缠的粒子中的一个结合起来。这会导致另一个纠缠对发生相应的变化,它可以位于任意距离之外。
然后接收器记录该纠缠对的变化。最后,发送方必须通过正常通道(即受光速限制)传输对纠缠对所做的原始更改。这允许接收器在新位置重建量子态。
传递一条微不足道的信息似乎需要做很多工作,但量子隐形传态可以实现完全安全的通信。如果窃听者拦截了信号,他们将打破纠缠,当接收者将传统信号与纠缠对中所做的变化进行比较时,就会发现纠缠。
纠缠在量子计算中的应用
简单的 2 量子位纠缠对 (EPR) 在量子计算中有一些已确定的应用,包括:
超密集编码
简而言之,超密集编码是使用 1 个纠缠量子位传输 2 个经典信息位的过程。超密集编码可以:
允许用户提前发送重建经典消息所需的一半时间,让用户以双倍速度传输,直到预先交付的量子位用完。
通过在高延迟通道上发送一半的信息来支持从低延迟通道传来的信息,从而将高延迟带宽转换为低延迟带宽。
在双向量子信道的一个方向上双倍经典容量(例如,将带宽为 B 的双向量子信道(在两个方向上)转换为带宽为 2B 的单向经典信道)。
量子密码学
密码学的关键是在两方之间提供安全通道。纠缠实现了这一点。如果两个系统纯粹纠缠在一起,则意味着它们彼此相关(即,当一个系统发生变化时,另一个系统也会发生变化)并且没有第三方共享这种相关性。此外,量子密码学受益于不可克隆定理,该定理指出:“不可能创建任意未知量子状​​态的独立且相同的副本”。因此,理论上不可能复制以量子态编码的数据。
量子隐形传态
量子隐形传态也是两方交换光子、原子、电子、超导电路等量子信息的过程。传送允许 QC 并行工作并使用更少的电力,从而将功耗降低 100 到 1000 倍。
量子隐形传态与量子密码学的区别在于:
量子隐形传态通过经典通道交换“量子”信息
量子密码学通过量子通道交换“经典”信息
目前量子隐形传态面临的挑战是:
传送的信息量
在传送之前,发送方和接收方之间共享的量子信息量。
发送者应该拥有该对的一个量子位,而接收者应该拥有该对的另一个量子位
发送方和接收方量子比特之间的先验相关强度增加了量子通道的容量
作用于量子通道的隐形传态电路噪声

太空大圆盘

这个世界已经变得越来越神奇了,连光线都不再是直的,但这又不由得我们不信。还有更神奇的,爱因斯坦用一个非凡的思维实验论证了这样一个事实:引力其实造成的是时空弯曲,也就是时间和空间同时被弯曲了。脑袋彻底晕了,完全无法想象出时间和空间弯曲是什么概念,如果说时间变慢,甚至说时间膨胀、空间收缩什么的,大概觉得还马马虎虎能想象得出来,但是这个时空弯曲实在太令人费解了。别慌,爱因斯坦这个非凡的思维实验叫作“爱因斯坦圆盘实验”。“有趣啊”,“前有牛顿水桶实验,后有爱因斯坦圆盘实验。干脆我们把有趣进行到底,把Tom和Jerry再次请出来吧”。这回让他们担任爱因斯坦的学生,一起来做这个思维实验。

爱因斯坦:“欢迎Tom和Jerry来到我的广义相对论大讲堂,本次讲课包你们满意。”
Tom托着腮帮子:“我讨厌上课。”
Jerry眯着眼睛:“能再睡会儿吗?”
爱因斯坦:“你们听我说,这堂课我们不在教室里上,我们去太空中上,怎么样?”
Tom和Jerry :“太空?哇,太好了!怎么去?快走快走。”
爱因斯坦:“请你们闭上眼睛,准备好了吗?般若波罗蜜!”
Tom和Jerry突然感到自己漂浮起来了,睁开眼睛一看,三人已经悬浮在漆黑的太空中了,四面八方全是星光点点。
爱因斯坦:“现在,我需要把你们俩放到一个特殊的、非常好玩的转盘游乐机里面去。”
Tom和Jerry :“在哪里?在哪里?”
爱因斯坦:“巴巴变!”
突然,三人眼前突然出现了一个巨大的转盘,就好像一个超级巨大的圆形饼干铁盒。
爱因斯坦:“这就是我们要去上课的地方,你们俩进去。因为我是这里的上帝,所以,你们俩的一切行动我都能看见,你们能听到我说的话,我也能听见你们说话。好了,现在给你们发道具,一人一只原子钟和纳米尺,这可是全世界最精确的时钟和量尺,千万要保护好。”Tom和Jerry接过钟和尺,丈二和尚摸不着头脑,完全不知道爱因斯坦教授有何用意。先进去再说,看看有什么好玩的。于是两人抓着“饼干盒”的门框,稍一用力,轻轻巧巧地就漂进去了。

[插图]

【图1】

爱因斯坦圆盘实验
爱因斯坦:“ Tom,现在请你在圆盘的内壁上就位;Jerry,请在圆盘底的圆心就位,我们的实验马上就要开始了。”
Tom:“这让我想起了我家关小白鼠的笼子里那个轮盘。”
Jerry:“这让我想起了我小时候最喜欢玩的东西。”
爱因斯坦:“请注意,我马上就要把它旋转起来了,你们准备好了吗?”
Tom和Jerry:“准备好了。”
爱因斯坦手一挥,整个转盘飞快地转动起来。
Tom由于是在圆盘的内壁位置,瞬间就感受到向心力。从我们观众的角度来看,他感受到的是向心力,但是对Tom自己来说,他根本分不出是重力还是向心力。且看我们的Tom怎么说。
Tom:“啊哈,我们是不是回到地球上了?我突然就感觉回到了地面,能正常走路了。”
爱因斯坦转身面向观众,解释说:“匀速圆周运动的实质是一种加速运动,根据我的等效原理,加速度和重力是一回事,所以Tom感受到了像在地球上一般的重力感。”
Jerry站在圆心的位置,所以他相对观众来说是静止的,Tom在Jerry周围一圈圈地转着。且看我们的Jerry是怎么说的。
Jerry说:“我没有感觉到任何变化,这里能见度不够,我甚至连Tom都看不到。”
爱因斯坦再次转向观众,解释说:“ Jerry就好像处在引力的边缘一样,他此时仍然是悬浮在太空中的,没有受到任何引力的影响。我们用这样一个旋转的圆盘创造了一个小小的人工引力场环境。接下去,我们就要研究这个引力场对我们的时间和空间到底造成了什么样的影响。先让我们来研究一下相对比较容易研究的时间问题。”
爱因斯坦转过身去对两人问道:“ Tom和Jerry,请你们告诉我,你们的原子钟的时间是多少?”
Tom :“ 11点55分,教授。”
Jerry :“ 12点整,教授。”
爱因斯坦解释说:“很好。大家请注意,Tom相对我们在运动,而Jerry相对我们则是静止的,根据狭义相对论的时间膨胀效应,运动会使得时间变慢,因此,我们可以很容易得出结论,那就是Tom的时间变慢了。但现在请大家把视角放回到Tom身上,对Tom来讲,他感觉自己并未运动,只不过是受到了引力而已,因此Tom可以得出这样的结论——引力使得时间膨胀了。让我们继续往下深入研究。”
爱因斯坦对Jerry说:“Jerry,现在我要你沿着圆盘上的径线往前去一点点。”
Jerry往前挪了一点点,突然就感受到了一点轻微的引力,这股引力在把他向远处拖拽,Jerry赶紧打开了绑在腰上的推进装置,以维持平衡。
爱因斯坦:“ Jerry,请你再告诉我你的时间。”
Jerry报了一个精确的数字,爱因斯坦发现比自己的原子钟慢了1秒钟。
爱因斯坦:“很好。Jerry,请你继续沿着径线朝前挪一点,跟刚才挪动的距离一样,再告诉我时间。”
Jerry照做,又报了一个精确的数字。
这次比爱因斯坦的原子钟时间慢了2.5秒。
爱因斯坦继续指挥着Jerry一点点朝前挪动,每挪一段距离,就报一个时间,爱因斯坦记下每次Jerry时间变慢的幅度。
爱因斯坦解释说:“Jerry的时间为什么会变慢,道理很简单,Jerry一旦离开了圆心,他就会产生速度,所以时间就会变慢,而且他的线速度是随着离开圆心的距离不断增大的,因此他的时间变慢幅度就会逐步增大。现在让我们构建一个笛卡尔坐标系,把X轴当作距离的变化,Y轴当作时间变慢的幅度大小,然后我们把刚才Jerry告诉我的所有数据用一个个点标在这个坐标系里,最后把这些点用线连起来,我们很快就会发现,这是一根抛物线,一根完美的曲线。换句话说,随着离开圆心的距离增大,引力会逐步增大,而时间会逐步变慢,但时间变慢的幅度是一根曲线。我们可以这样理解,在圆盘上时间弯曲了;进一步说,也就是引力使得时间弯曲了。”
你禁不住鼓起掌来,太精彩了,爱因斯坦不愧是大师级人物啊,我似乎明白了时间弯曲是怎么回事了。继续继续,那空间弯曲又该怎么理解呢?
爱因斯坦:“Tom和Jerry,请拿出你们的纳米尺,不要告诉我你们弄丢了,那一把尺子可要花去教授我一个月的薪水呢。”

Tom:“教授,尺子在手里呢,让我做什么?”
Jerry:“这把尺子真好看。”
爱因斯坦:“ Jerry,我要你现在开始量一下圆盘的半径长度。Tom你呢,就帮我量一下圆盘周长,就是你刚好走一圈的长度。”
不一会儿,两人都把数字报过来了。爱因斯坦用Tom量的周长除以Jerry量的半径,得出的数字发现比2π要大,这是怎么回事?
爱因斯坦解释说:“请注意,从我们观众的角度看起来,Tom由于在运动,那么根据狭义相对论,在运动方向上就会发生尺缩现象,所以Tom手里的那根纳米尺就会缩短一点点。而同时,Jerry是在沿着径线方向丈量,在这个方向上,纳米尺没有运动,自然也就不会发生尺缩现象。于是,Tom量出来的周长就会比静止时长一点点,而Jerry量出来的半径则不会变化。于是,奇怪的事情发生了,这个转动的圆盘的圆周率大于π。我们进一步想下去,在这个圆盘的人造引力场中,所有以Jerry为圆心的半径不同的圆都可以用同样的方法得出圆周率大于π的这个惊人事实。观众们,你能告诉我在什么情况下一个圆的圆周率大于π吗?”
一个聪明的观众说道:“我知道,我知道。”
爱因斯坦:“请讲。”
观众:“圆规的质量不过关,不小心把圆画成了椭圆的情况下。”
爱因斯坦:“拜托,我们这不是脑筋急转弯呢,不考虑这种意外误差情况。”
观众一脸不好意思:“那我就不知道了。”
爱因斯坦:“如果你在一张纸上画一个标准的圆,圆周率自然是π。但是,如果你在一个篮球上画一个标准的圆,然后去测算一下的话,就会发现篮球上那个圆的圆周率小于π。同理,如果你在一个马鞍面上画一个标准的圆,则圆周率就会大于π。观众们,我们的结论就是,如果在一个曲面上画圆,圆周率就不会等于π。由此可见,在圆盘引力场中,我们发现圆周率大于π,这说明这个圆盘引力场中的空间并非平直,而是——弯曲的。”

[插图]

【图2】

平面上的圆、球面上的圆、马鞍面上的圆
你再一次禁不住鼓起掌来,真是精彩啊!其实我在理解了爱因斯坦的这个圆盘实验后,也是禁不住大声喝彩,这实在是一场思维的盛宴。你马上就想到:我这么抬起手来,朝空中一劈,使一招“扭转乾坤”,显然我的手劈下去不是匀速直线运动而是加速运动,那岂不是我这一招真的可以把时空给弄弯曲了?没错,你的思考完全正确,只是你这一劈造成的时空弯曲效应,恐怕要把你的手放大到银河系那么大才有可能被察觉到。

经济学逻辑对现象的解释,常常让人感到离经叛道,如鲠在喉…缓解撕书的心情,细细想来它又是那么正确且讨厌。
在这个由人类群体构建的想象社会里,主流道德观念的变化,更是不同时代出于效率的考量而发生改变。
让女性得以“抛头露面”“侃侃而谈”“独领一方”的,与其说是思想观念的进步,不如说是机会成本的上升...


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 张继科景甜疑恋爱深夜撒狗粮,记者发问:怎么还不公开呢?
  • 迅雷在美遭诉讼:讲故事惹出的祸?
  • 腾讯立知被指抄袭即刻,下线无解释是默认了?
  • 杭州保姆纵火案开庭不久"意外"中止!被害人家属:这半年生不如死
  • 琥珀又立功:中外科学家发现一亿年前最完整古鸟,蜂鸟大小
  • 中国一神秘部队曝光,美最担心的事要来
  • 【新规】企业年金即日起实施 你可能会多领一份养老金
  • 刘青云“儿子力”爆棚 当街抱母亲下车超孝顺
  • 小米IPO锁定香港 估值预计千亿美元!雷军股份太多,或成新首富!
  • 刚刚,谢娜给张杰生了双胞胎女儿!一次生俩,其实不简单
  • 三星今年赚翻了?竟然奖励员工半年薪水?!
  • 冬奥倒计时1月中国军团备战情况如何?看完就知道!
  • 獐子岛扇贝又跑了,扇贝上演青蛙的旅行?
  • 幸福满满!阿娇被求婚晒钻戒 网友:认爱三个月终于要嫁人了
  • 双胞胎告苹果索赔 因iPhone X无法识别二人
  • 曼联11秒遭闪击 成英超历史上第三快进球
  • 2018春运明日启幕,你的车票买到了吗?
  • 山西婚姻消费补贴全面启动 以新婚人群为主要服务对象
  • 江苏省破重大军事间谍案,两名犯罪嫌疑人已被抓获
  • 失联卫星被找回!NASA都放弃寻找 被业余天文发烧友找回