【揭开埃博拉病毒“复制机器”的面纱】今年9月,非洲乌干达再次出现新的埃博拉疫情。这意味着埃博拉病毒这把“达摩克利斯之剑”依然悬在头顶,时刻威胁着人们的健康。

科学界一直想研制一款成本低、有利于推广的广谱性抗埃博拉病毒小分子药物,但却缺乏理论指导。埃博拉病毒聚合酶负责病毒基因组复制过程,且具有较高保守性,是研发广谱性药物的重要靶标。但埃博拉病毒聚合酶的分子量大、不稳定、易降解,其三维结构的解析一直是世界性难题。

现在,中国科学院微生物所高福院士团队和施一团队合作,首次解析了埃博拉病毒聚合酶复合物的三维结构,为从分子水平理解埃博拉病毒复制机制奠定了关键理论基础。他们还解析了老药苏拉明能有效抑制埃博拉病毒聚合酶活性的分子机制,为抗埃博拉病毒的药物开发提供了新的靶点和方向。相关研究9月28日发表于《自然》杂志。

现形:结构稳定的“复制机器”

埃博拉病毒病是由埃博拉病毒引起的烈性急性传染病,主要在人或灵长目动物之间传播。自1976年首次在非洲扎伊尔和苏丹被发现后,埃博拉病毒已在非洲肆虐了近50年,暴发过30多次,造成数万人死亡,病死率最高可达90%。

其中,2014-2016年暴发于西非国家的埃博拉疫情,是有史以来最严重的一次,共导致约2.9万人感染,超过1.1万人死亡。2018至2020年暴发于刚果民主共和国的埃博拉疫情也导致3481人感染,2299人死亡。2021年在西非国家几内亚再次发现埃博拉病毒活跃迹象,提示病毒可能存在潜伏感染。

这些数据说明,对埃博拉病毒仍需加强科学研究。

目前,已有两款上市的扎伊尔型埃博拉病毒抗体药物,其作用靶点是埃博拉病毒表面刺突糖蛋白(GP)。

“已上市的抗体药物具有特异性,不能用于治疗其他类型埃博拉病毒以及马尔堡病毒等丝状病毒。此外,病毒表面的GP蛋白在宿主免疫压力下也容易发生免疫逃逸,有可能造成抗体药物效果变差甚至无效。”论文通讯作者施一对《中国科学报》说。

此外,他表示,由于抗体药物制造成本比较高,需要低温储存,不利于在非洲地区普及推广使用。开发有效安全的广谱性抗病毒小分子药物是应对不同类型埃博拉病毒和其他丝状病毒感染的重要研究方向。

科学家已经发现,埃博拉病毒基因组的转录与复制过程由病毒聚合酶蛋白L和其他辅助蛋白形成的复合物来共同完成。由于聚合酶复合物在不同的丝状病毒中具有高度保守性,是非常理想的广谱性抗病毒药物开发靶点。

此前的研究还发现瑞德西韦和法比拉韦,这两个针对埃博拉病毒聚合酶的核苷类小分子药物具有良好的体外抗病毒活性。然而,其临床效果却并不理想。目前,临床上尚未有批准可用于治疗埃博拉病毒感染的小分子药物。

那么,现有的靶向聚合酶药物如何进行结构优化?能否针对聚合酶保守位点开发新的药物来治疗埃博拉病毒病?

回答这些问题,迫切要求研究人员弄清楚埃博拉病毒的复制机制。

埃博拉病毒属于丝状病毒科,基因组为不分节段的负链RNA,长约19 kb,包含7个开放阅读框。过去近10年,科学家对这种病毒的复杂结构已经有了一些了解,比如它的RNA基因组被核蛋白(NP)包裹,形成核糖核蛋白复合体(RNP),进一步与聚合酶蛋白(L)、病毒辅助蛋白(VP35)、转录激活蛋白(VP30)和核衣壳相关蛋白(VP24)结合,形成螺旋状核衣壳结构,并被基质蛋白(VP40)环绕,进一步与病毒表面GP蛋白形成完整病毒颗粒。

解析埃博拉病毒聚合酶的三维结构却是全球病毒学家面临的一个挑战。经过多年的尝试摸索,施一与高福合作研究团队成功表达纯化获得了埃博拉病毒聚合酶复合物蛋白(L-VP35复合物),并利用冷冻电镜技术解析其高分辨率三维结构。他们发现,埃博拉病毒的聚合酶L蛋白会与VP35蛋白四聚体形成稳定的复合物,进行病毒基因组复制和转录。

那么,L-VP35聚合酶复合物如何介导这一功能呢?研究团队在原子层面对这个问题进行了深入探索。

入微:揭开“共舞”机制

通过深入观察,研究团队对聚合酶复合物的动态构象变化有了微观水平的了解。

作为病毒“复制机器”的核心,聚合酶在生成子代RNA的过程中涉及到多种构象变化,从而促进产物顺利合成,其中最重要的构象变化是从起始态到延伸态的转变。

此前的研究表明,聚合酶从起始状态进入到延伸状态时,酶活中心的两个关键结构元件——启动环(priming loop)和支撑螺旋(supporting helix)必须发生巨大的构象调整,才能保证产物链有足够的空间进行延伸。否则,就会与产物链发生空间位阻。

研究者通过改变冷冻电镜的制样条件,捕捉到了埃博拉病毒聚合酶处于延伸状态时的精细结构。他们发现,在处于延伸构象时,启动环完全缩回到加帽结构域,而支撑螺旋也会远离聚合酶的活性中心,从而为模板/产物双链RNA提供足够的空间进行延伸。

那么,病毒VP35蛋白如何与L聚合酶“共舞”呢?

研究发现,在病毒复制过程中,VP35会像“桥梁”一样,起到连接L蛋白和病毒RNP的功能。“当L聚合酶进行病毒基因组复制时,是以螺旋形的RNP为模板,而不是以裸露的RNA为模板,这时VP35主要行使的是分子伴侣功能,介导L聚合酶以RNP为单元进行复制。”施一说。

他向《中国科学报》解释,VP35四聚体除了中间的寡聚化结构域,两头分别有四个N端(氨基端)结构域和四个C端(羧基端)结构域,其中一个C端结合到L蛋白上,进一步稳定L聚合酶与VP35四聚体的结合,同时另外七个端会像“八爪鱼的触角”一样,帮助L聚合酶在RNP结构上发生滑动,以及结合单体状态下的病毒RNP蛋白,阻止其与宿主RNA发生非特异性相互作用,保证单体NP蛋白能够用于子代RNP的生成。

“如果没有VP35,L聚合酶蛋白就没法进行基因组复制和转录过程。”施一表示,如果能够阻断L蛋白和VP35的结合,病毒将无法复制。

洞见:指导药物设计与优化

开发能有效抑制埃博拉病毒的小分子药物一直是国际热点,也是难点。

施一表示,了解L-VP35复合物相互作用界面的分子细节,为进一步开发靶向聚合酶的药物提供了新的靶点以及重要指导信息。

据介绍,埃博拉病毒聚合酶活性结构域和加帽结构域与呼吸道合胞病毒(RSV)和狂犬病毒(RABV)等其他(基因组)不分节段的负链RNA病毒聚合酶结构相似,说明这类病毒聚合酶在进化过程中具有保守性。

值得注意的是,研究者指出,埃博拉病毒聚合酶的N端结构域区域具有一个丝状病毒特有的插入结构域,并在埃博拉病毒聚合酶发挥活性时是必不可少的,可成为潜在的抗病毒药物研发靶点。

此次研究中,研究团队还对百年老药苏拉明体外抗埃博拉病毒活性的分子机制进行了探索。

苏拉明是20世纪初由德国化学家保罗·埃利希首次分离出来的一种无嗅、无味的白色粉末,可溶于生理盐水中,后来被发现可用于治疗多种寄生虫病,从20世纪20年代初被广泛用于治疗非洲昏睡病和盘尾丝虫病等寄生虫病。近年来,科学家发现苏拉明具有抗新冠以及癌症活性。前期初步研究提示苏拉明也具有抗埃博拉病毒活性,但其作用机制不甚清楚。

研究人员通过体外酶活和细胞复制子实验,发现苏拉明能有效地抑制埃博拉病毒聚合酶活性,并进一步利用冷冻电镜技术解析了埃博拉病毒聚合酶与苏拉明的复合物结构,揭示苏拉明是通过结合在聚合酶的NTP进入通道,阻碍底物进入酶活中心而发挥抑制作用。苏拉明药物与L蛋白相互作用的分子细节,为进一步改造和优化苏拉明药物提供了关键参考信息。

“苏拉明是一种潜在的抗病毒药物,这项研究的一个亮点是解析L蛋白与苏拉明的复合物,这可以指导进一步的抗病毒药物设计。”该论文一位审稿人说。另一位同行评审人则表示,埃博拉病毒L蛋白结构信息的缺乏一直是该领域公认的空白,这项研究提供了重要的信息,有助于促进基于结构的抗病毒药物设计。https://t.cn/A6o7Cgr9

【揭开埃博拉病毒“复制机器”的面纱】今年9月,非洲乌干达再次出现新的埃博拉疫情。这意味着埃博拉病毒这把“达摩克利斯之剑”依然悬在头顶,时刻威胁着人们的健康。

科学界一直想研制一款成本低、有利于推广的广谱性抗埃博拉病毒小分子药物,但却缺乏理论指导。埃博拉病毒聚合酶负责病毒基因组复制过程,且具有较高保守性,是研发广谱性药物的重要靶标。但埃博拉病毒聚合酶的分子量大、不稳定、易降解,其三维结构的解析一直是世界性难题。

现在,中国科学院微生物所高福院士团队和施一团队合作,首次解析了埃博拉病毒聚合酶复合物的三维结构,为从分子水平理解埃博拉病毒复制机制奠定了关键理论基础。他们还解析了老药苏拉明能有效抑制埃博拉病毒聚合酶活性的分子机制,为抗埃博拉病毒的药物开发提供了新的靶点和方向。相关研究9月28日发表于《自然》杂志。

现形:结构稳定的“复制机器”

埃博拉病毒病是由埃博拉病毒引起的烈性急性传染病,主要在人或灵长目动物之间传播。自1976年首次在非洲扎伊尔和苏丹被发现后,埃博拉病毒已在非洲肆虐了近50年,暴发过30多次,造成数万人死亡,病死率最高可达90%。

其中,2014-2016年暴发于西非国家的埃博拉疫情,是有史以来最严重的一次,共导致约2.9万人感染,超过1.1万人死亡。2018至2020年暴发于刚果民主共和国的埃博拉疫情也导致3481人感染,2299人死亡。2021年在西非国家几内亚再次发现埃博拉病毒活跃迹象,提示病毒可能存在潜伏感染。

这些数据说明,对埃博拉病毒仍需加强科学研究。

目前,已有两款上市的扎伊尔型埃博拉病毒抗体药物,其作用靶点是埃博拉病毒表面刺突糖蛋白(GP)。

“已上市的抗体药物具有特异性,不能用于治疗其他类型埃博拉病毒以及马尔堡病毒等丝状病毒。此外,病毒表面的GP蛋白在宿主免疫压力下也容易发生免疫逃逸,有可能造成抗体药物效果变差甚至无效。”论文通讯作者施一对《中国科学报》说。

此外,他表示,由于抗体药物制造成本比较高,需要低温储存,不利于在非洲地区普及推广使用。开发有效安全的广谱性抗病毒小分子药物是应对不同类型埃博拉病毒和其他丝状病毒感染的重要研究方向。

科学家已经发现,埃博拉病毒基因组的转录与复制过程由病毒聚合酶蛋白L和其他辅助蛋白形成的复合物来共同完成。由于聚合酶复合物在不同的丝状病毒中具有高度保守性,是非常理想的广谱性抗病毒药物开发靶点。

此前的研究还发现瑞德西韦和法比拉韦,这两个针对埃博拉病毒聚合酶的核苷类小分子药物具有良好的体外抗病毒活性。然而,其临床效果却并不理想。目前,临床上尚未有批准可用于治疗埃博拉病毒感染的小分子药物。

那么,现有的靶向聚合酶药物如何进行结构优化?能否针对聚合酶保守位点开发新的药物来治疗埃博拉病毒病?

回答这些问题,迫切要求研究人员弄清楚埃博拉病毒的复制机制。

埃博拉病毒属于丝状病毒科,基因组为不分节段的负链RNA,长约19 kb,包含7个开放阅读框。过去近10年,科学家对这种病毒的复杂结构已经有了一些了解,比如它的RNA基因组被核蛋白(NP)包裹,形成核糖核蛋白复合体(RNP),进一步与聚合酶蛋白(L)、病毒辅助蛋白(VP35)、转录激活蛋白(VP30)和核衣壳相关蛋白(VP24)结合,形成螺旋状核衣壳结构,并被基质蛋白(VP40)环绕,进一步与病毒表面GP蛋白形成完整病毒颗粒。

解析埃博拉病毒聚合酶的三维结构却是全球病毒学家面临的一个挑战。经过多年的尝试摸索,施一与高福合作研究团队成功表达纯化获得了埃博拉病毒聚合酶复合物蛋白(L-VP35复合物),并利用冷冻电镜技术解析其高分辨率三维结构。他们发现,埃博拉病毒的聚合酶L蛋白会与VP35蛋白四聚体形成稳定的复合物,进行病毒基因组复制和转录。

那么,L-VP35聚合酶复合物如何介导这一功能呢?研究团队在原子层面对这个问题进行了深入探索。

入微:揭开“共舞”机制

通过深入观察,研究团队对聚合酶复合物的动态构象变化有了微观水平的了解。

作为病毒“复制机器”的核心,聚合酶在生成子代RNA的过程中涉及到多种构象变化,从而促进产物顺利合成,其中最重要的构象变化是从起始态到延伸态的转变。

此前的研究表明,聚合酶从起始状态进入到延伸状态时,酶活中心的两个关键结构元件——启动环(priming loop)和支撑螺旋(supporting helix)必须发生巨大的构象调整,才能保证产物链有足够的空间进行延伸。否则,就会与产物链发生空间位阻。

研究者通过改变冷冻电镜的制样条件,捕捉到了埃博拉病毒聚合酶处于延伸状态时的精细结构。他们发现,在处于延伸构象时,启动环完全缩回到加帽结构域,而支撑螺旋也会远离聚合酶的活性中心,从而为模板/产物双链RNA提供足够的空间进行延伸。

那么,病毒VP35蛋白如何与L聚合酶“共舞”呢?

研究发现,在病毒复制过程中,VP35会像“桥梁”一样,起到连接L蛋白和病毒RNP的功能。“当L聚合酶进行病毒基因组复制时,是以螺旋形的RNP为模板,而不是以裸露的RNA为模板,这时VP35主要行使的是分子伴侣功能,介导L聚合酶以RNP为单元进行复制。”施一说。

他向《中国科学报》解释,VP35四聚体除了中间的寡聚化结构域,两头分别有四个N端(氨基端)结构域和四个C端(羧基端)结构域,其中一个C端结合到L蛋白上,进一步稳定L聚合酶与VP35四聚体的结合,同时另外七个端会像“八爪鱼的触角”一样,帮助L聚合酶在RNP结构上发生滑动,以及结合单体状态下的病毒RNP蛋白,阻止其与宿主RNA发生非特异性相互作用,保证单体NP蛋白能够用于子代RNP的生成。

“如果没有VP35,L聚合酶蛋白就没法进行基因组复制和转录过程。”施一表示,如果能够阻断L蛋白和VP35的结合,病毒将无法复制。

洞见:指导药物设计与优化

开发能有效抑制埃博拉病毒的小分子药物一直是国际热点,也是难点。

施一表示,了解L-VP35复合物相互作用界面的分子细节,为进一步开发靶向聚合酶的药物提供了新的靶点以及重要指导信息。

据介绍,埃博拉病毒聚合酶活性结构域和加帽结构域与呼吸道合胞病毒(RSV)和狂犬病毒(RABV)等其他(基因组)不分节段的负链RNA病毒聚合酶结构相似,说明这类病毒聚合酶在进化过程中具有保守性。

值得注意的是,研究者指出,埃博拉病毒聚合酶的N端结构域区域具有一个丝状病毒特有的插入结构域,并在埃博拉病毒聚合酶发挥活性时是必不可少的,可成为潜在的抗病毒药物研发靶点。

此次研究中,研究团队还对百年老药苏拉明体外抗埃博拉病毒活性的分子机制进行了探索。

苏拉明是20世纪初由德国化学家保罗·埃利希首次分离出来的一种无嗅、无味的白色粉末,可溶于生理盐水中,后来被发现可用于治疗多种寄生虫病,从20世纪20年代初被广泛用于治疗非洲昏睡病和盘尾丝虫病等寄生虫病。近年来,科学家发现苏拉明具有抗新冠以及癌症活性。前期初步研究提示苏拉明也具有抗埃博拉病毒活性,但其作用机制不甚清楚。

研究人员通过体外酶活和细胞复制子实验,发现苏拉明能有效地抑制埃博拉病毒聚合酶活性,并进一步利用冷冻电镜技术解析了埃博拉病毒聚合酶与苏拉明的复合物结构,揭示苏拉明是通过结合在聚合酶的NTP进入通道,阻碍底物进入酶活中心而发挥抑制作用。苏拉明药物与L蛋白相互作用的分子细节,为进一步改造和优化苏拉明药物提供了关键参考信息。

“苏拉明是一种潜在的抗病毒药物,这项研究的一个亮点是解析L蛋白与苏拉明的复合物,这可以指导进一步的抗病毒药物设计。”该论文一位审稿人说。另一位同行评审人则表示,埃博拉病毒L蛋白结构信息的缺乏一直是该领域公认的空白,这项研究提供了重要的信息,有助于促进基于结构的抗病毒药物设计。https://t.cn/A6o7Cgr9

人不可以选择出生的家庭,但是可以选择自己组建的家庭,可以选择自己的生活方式——李银河命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机
.・◡・
清理以往不开心的事
九月才有储存快乐的空间
[心][心][心][心][心][心][心][心][心][心][心][心]


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 我:喲,你帮我做的啊?她:呵,既然是我的家,你可以住下去。
  • 说起一乐,我就有点伤心,他是许玉兰和何小勇生的,我白白的给别人养了儿子,当了乌龟,但很多人都说,一乐像我,我也这么觉得,三个儿子,我最喜欢一乐,可偏偏他就不是
  • 【11月好书推荐】玉娥亲子读书会专注于亲子类好书的阅读、分享、推广,这次要推出的是《种子》。现在我们向爱书写作的你发出邀请,参与点赞转发评论一条龙,将有机会成为
  • 一次又一次的退让只会让阿棺ch更加猖狂,阴间操作越来越多!一定要撑住!
  • 楼下的一只很小奶猫从昨天叫到现在,一直躲着不出来,偶尔声音停顿,是叫累了,刚刚去看累到眼睛睁不开了,停下来睡了,昨天丢了点东西他出来吃了一点,今天看到别人给他泡
  • 而太極之原在人身:靜則無聲無臭不二之,神;動為良知良能時措之真意——合之,五行也。此天地人物,仒共生生之厚德,有物則在物,無物則還太虛,不以人物之生死而有加減也
  • 而全职妈妈带的孩子就不一样了,从小就享受到了母亲充分的陪伴,所以说,她和母亲的关系也肯定是更好一些的。因为妈妈是孩子安全感的来源,那些从小没有妈妈陪伴的孩子,往
  • 夏天用的话就很厚重了,真的会很油整体的一套用下来⭐⭐⭐⭐,适合所有肤质,对大干皮姐妹友好,油皮姐妹可以少涂一点精华霜,敏感肌姐妹可以放心入「✿日常温柔文案✿」❶
  • P6:虽然说烂了也还是要说,高杨对自己有一个清醒的认知,并且认可自己,不仰赖他人的认同来生存,这样才能不被他人左右。思虑也挺重的这样的人不进步什么样的人进步呢
  • 2.妇科疾病困扰缠身随着年龄的增加,有些女性的疾病渐渐多了起来,如月经量异常、剖宫产瘢痕子宫、宫颈病、子宫肌瘤、子宫内膜异位症、子宫腺肌症、以及盆腔炎的发病率逐
  • 张持之以恒,潜心磨技缓慢,但绝不怠慢,以至工换取至善以手抵心,落手无悔势伏是来日的高飞,匠心必将成就器魂以静心看世界,在过往烟云中凝眸在平凡中非凡,在尽头处超越
  •   而三才五格数理的吉凶由名字的康熙笔画确定,康熙字典记载的才是最原始的汉字,古人造字,赋予汉字能量与信息。姓名学—象数理传承第一:名字补救法所谓名字补救法,就
  • 这个路数的剧集我们看过很多,从童年经典的《上错花轿嫁对郎》到近年来热播的《大唐荣耀》《凤求凰》《双世宠妃》都是这个套路。剧中,新人演员#张羽清# 饰演的是鹿亦尧
  • 一个人去看电影的一天,观察了一下,电影院就我一个人是独自去看电影的,但还是很开心[嘻嘻][嘻嘻]#国旻[超话]#想指责我就来我博里说,怂什么呀,自己小圈子里带节
  • 1、有观众进入时,要大声说出小伙伴的昵称和ID,欢迎大家进入你的直播间同时提醒大家关注点赞。Never以前是gogo的白月光其實也是我的白月光Never大概就是
  • 以前初高中看斗罗斗破,当时听闻一大批网文被签约要改编影视剧,当时寻思着什么玩意,网文这种️东西都能上大荧幕了过了好几年一拍完,嚯,原来我那个时代看的网文已然足够
  • 马克思继承了黑格尔时间和空间的统一性,他认为时间是在社会运动中通过空间而现实存在的。时间之所以是人的积存,在更为为人的社会实践活动,根源于社会实践活动的能源性和
  • Toutefois, mon pied allait fléchir, Mes pas étaient sur le point de glisser; Car
  • 不仅感受到了维也纳的咖啡文化,还跟着小红帽咖啡的专业咖啡师制作了一杯维也纳经典咖啡Malenge,亲手磨制咖啡豆、打奶泡,亲手尝试制作一杯纯正的维也纳咖啡,满满
  • 在这里,奥吉将与校长、老师以及性格异的同学相处,他不寻常的外表让他成为同学们讨论的焦点,并终日受到嘲笑和排斥,就连好不容易交到的新朋友也似乎不太值得信任。#WE